मात्रात्मक रूझान MCQ Quiz in हिन्दी - Objective Question with Answer for Quantitative Aptitude - मुफ्त [PDF] डाउनलोड करें

Last updated on Jul 10, 2025

पाईये मात्रात्मक रूझान उत्तर और विस्तृत समाधान के साथ MCQ प्रश्न। इन्हें मुफ्त में डाउनलोड करें मात्रात्मक रूझान MCQ क्विज़ Pdf और अपनी आगामी परीक्षाओं जैसे बैंकिंग, SSC, रेलवे, UPSC, State PSC की तैयारी करें।

Latest Quantitative Aptitude MCQ Objective Questions

मात्रात्मक रूझान Question 1:

यदि 3.4 + 2.025 + 9.36 - 3 × (4.1003) = 3 - p है, तब p का मान क्या है?

  1. 0.4741
  2. 0.4841
  3. 0.5159
  4. 0.5249
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 3 : 0.5159

Quantitative Aptitude Question 1 Detailed Solution

दिया गया है: 

⇒ 3.4 + 2.025 + 9.36 - 3 × (4.1003) = 3 - p

प्रयुक्त अवधारणा: 

629233f19523b882ad079702 16537492407481

गणना:

⇒ 3.4 + 2.025 + 9.36 - 3 × (4.1003) = 3 - p

⇒ 3.4 + 2.025 + 9.36 - 12. 3009 = 3 - p

⇒ 14. 785 - 12. 3009 = 3 - p

⇒ 2.4841 = 3 - p

⇒ p = 0. 5159

∴ विकल्प 3 सही है।

मात्रात्मक रूझान Question 2:

निम्नलिखित प्रश्न में प्रश्नवाचक चिन्ह (?) के स्थान पर क्या आना चाहिए?

361=?14217×7

  1. 334
  2. 23
  3. 20
  4. 27
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 1 : 334

Quantitative Aptitude Question 2 Detailed Solution

गणना:

361=?14217×7

19 = x - 196 - 119

x = 19 + 196 + 119

x = 334

∴ सही उत्तर 334 है।

मात्रात्मक रूझान Question 3:

नौ क्रमागत पूर्णांकों का औसत 54 है। इन संख्याओं में से दूसरा सबसे बड़ा पूर्णांक कौन-सा है?

  1. 57
  2. 50
  3. 58
  4. 59
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 1 : 57

Quantitative Aptitude Question 3 Detailed Solution

दिया गया है:

नौ क्रमागत पूर्णांकों का औसत 54 है।

प्रयुक्त सूत्र:

विषम संख्या में क्रमागत पूर्णांकों का औसत = मध्य पूर्णांक

गणना:

मान लीजिए कि नौ क्रमागत पूर्णांक x - 4, x - 3, x - 2, x - 1, x, x + 1, x + 2, x + 3, x + 4 हैं।

इन पूर्णांकों का औसत मध्य पूर्णांक है, जो xx है।

दिया गया है कि औसत 54 है, इसलिए:

⇒ x = 54

पूर्णांक हैं: 50, 51, 52, 53, 54, 55, 56, 57, 58

इन पूर्णांकों में दूसरा सबसे बड़ा पूर्णांक है:

⇒ 57

सही उत्तर विकल्प 1 है।

मात्रात्मक रूझान Question 4:

निर्देश: दिए गए प्रश्न में, दो समीकरण I और II दिए गए हैं। दोनों समीकरणों को हल करें और उपयुक्त उत्तर चिह्नित करें।

I. x² − 35x + 294 = 0

II. y² − 38y + 345 = 0

  1. x > y
  2. x ≥ y
  3. x < y
  4. x ≤ y
  5. x = y या संबंध निर्धारित नहीं किया जा सकता

Answer (Detailed Solution Below)

Option 5 : x = y या संबंध निर्धारित नहीं किया जा सकता

Quantitative Aptitude Question 4 Detailed Solution

समीकरण I: x² − 35x + 294 = 0

⇒ विविक्तकर = 35² − 4x294 = 1225 − 1176 = 49

⇒ मूल: x = [35 ± 7] ÷ 2 ⇒ x = 21 या 14

समीकरण II: y² − 38y + 345 = 0

⇒ विविक्तकर = 38² − 4x345 = 1444 − 1380 = 64

⇒ मूल: y = [38 ± 8] ÷ 2 ⇒ y = 23 या 15

संभावित मान:

x ∈ {14, 21}

y ∈ {15, 23}

चूँकि कभी-कभी x < y (जैसे 14 < 15) और कभी-कभी x > y (जैसे 21 > 15), इसलिए x और y के बीच का संबंध विशिष्ट रूप से निर्धारित नहीं किया जा सकता है।

इस प्रकार, सही उत्तर है x = y या संबंध स्थापित नहीं किया जा सकता

मात्रात्मक रूझान Question 5:

[{(9261)13÷8114}2×12964] किसके बराबर है?

  1. 147
  2. 294
  3. 174
  4. 249
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 2 : 294

Quantitative Aptitude Question 5 Detailed Solution

प्रयुक्त सूत्र:

BODMAS 

B कोष्ठक (),{},[]
O का Of
D भाग ÷
M गुणा ×
A जोड़ +
S घटाना -

 

गणना:

[{(9261)1/3 ÷ 811/4}2 × 12964 ]

⇒[{ (213)1/3 ÷ 34 × 1/4}2 × 64 × 1/4 ]

⇒ [{21/3}2 × 6]

⇒ [49 × 6 ] = 294

अतः, अभीष्ट मान 294 है।

Top Quantitative Aptitude MCQ Objective Questions

यदि x − 1x = 3 है, तो x3 − 1x3 का मान ज्ञात कीजिए। 

  1. 36
  2. 63
  3. 99
  4. इनमें से कोई नहीं

Answer (Detailed Solution Below)

Option 1 : 36

Quantitative Aptitude Question 6 Detailed Solution

Download Solution PDF

दिया गया है:

x - 1/x = 3

प्रयुक्त अवधारणा:

a3 - b3 = (a - b)3 + 3ab(a - b)

गणना:

x3 - 1/x3 = (x - 1/x)3 + 3 × x × 1/x × (x - 1/x)

⇒ (x - 1/x)3 + 3(x - 1/x)

⇒ (3)3 + 3 × (3)

⇒ 27 + 9 = 36

∴ x3 - 1/x3 का मान 36 है।

Alternate Methodयदि x - 1/x = a है, तब x3 - 1/x3 = a3 + 3a

यहाँ a = 3

x - 1/x3 = 33 + 3 × 3

= 27 + 9

= 36

एक दुकानदार, अंकित मूल्य पर 15 प्रतिशत छूट पर रेडियो बेचने पर 25 प्रतिशत का लाभ प्राप्त करता है। रेडियो के अंकित मूल्य और क्रय मूल्य के अनुपात को ज्ञात कीजिए।

  1. 17 : 25
  2. 25 : 27
  3. 27 : 25
  4. 25 : 17
  5. कोई नहीं

Answer (Detailed Solution Below)

Option 4 : 25 : 17

Quantitative Aptitude Question 7 Detailed Solution

Download Solution PDF

दिया है:

लाभ = 25 प्रतिशत

छूट = 15 प्रतिशत

सूत्र:

MP/CP = (100 + लाभ%)/(100 - छूट%)

MP = अंकित मूल्य

CP = क्रय मूल्य

गणना:

हम जानते हैं कि –

MP/CP = (100 + लाभ %)/(100 – छूट %)   ………. (1)

दिए गए सभी मानों को समीकरण (1) में रखिये तब हम प्राप्त करते हैं

MP/CP = (100 + 25)/(100 – 15)

⇒ 125/85

⇒ 25/17

∴ रेडियो के अंकित मूल्य और क्रय मूल्य का अनुपात 25 ∶ 17 होगा

समान लंबाई की छह जीवाएं, 14√2 सेमी व्यास के अर्धवृत्त के अंदर खींची जाती हैं। छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए?

F4 Aashish S 21-12-2020 Swati D7

  1. 7
  2. 5
  3. 9
  4. 8

Answer (Detailed Solution Below)

Option 1 : 7

Quantitative Aptitude Question 8 Detailed Solution

Download Solution PDF

दिया है​:

अर्धवृत्त का व्यास = 14√2 सेमी

त्रिज्या =  14√2/2 = 7√2 सेमी

जीवाओं की कुल संख्या = 6

संकल्पना:

चूंकि जीवाएं लंबाई में बराबर हैं, इसलिए वे केंद्र में समान कोणों बनाएंगी। एक त्रिज्यखंड के क्षेत्रफल की गणना करें और एक जीवा और त्रिज्या द्वारा गठित समद्विबाहु त्रिभुज के क्षेत्रफल को घटाएं, फिर वांछित परिणाम प्राप्त करने के लिए परिणाम को 6 से गुणा करें।

उपयोग किया गया सूत्र:

त्रिज्यखंड का क्षेत्रफल = (θ/360°) × πr2

त्रिभुज का क्षेत्रफल = 1/2 × a × b × Sin θ

गणना:

F4 Aashish S 21-12-2020 Swati D8

प्रत्येक जीवा द्वारा बनाया गया कोण = 180°/ जीवाओं की संख्या

⇒ 180°/6 

⇒ 30°

त्रिज्यखंड AOB का क्षेत्रफल  = (30°/360°) × (22/7) × 7√2 × 7√2

⇒ (1/12) × 22 × 7 × 2

⇒ (77/3) सेमी2

त्रिभुज AOB का क्षेत्रफल = 1/2 × a × b × Sin θ

1/2 × 7√2 × 7√2 × Sin 30°

1/2 × 7√2 × 7√2 × 1/2

⇒ 49/2 सेमी2

∴ छायांकित क्षेत्र का क्षेत्रफल = 6 × (त्रिज्यखंड AOB का क्षेत्रफल - त्रिभुज AOB का क्षेत्रफल)

⇒ 6 × [(77/3) - (49/2)]

⇒ 6 × [(154 - 147)/6]

⇒ 7 सेमी2

∴ छायांकित क्षेत्र का क्षेत्रफल 7 सेमी2 है। 

220 मीटर × 70 मीटर का एक आयताकार बगीचा है। बगीचे के चारों ओर 4 मीटर चौड़ा रास्ता बनाया गया है। पथ का क्षेत्रफल क्या है?

  1. 2472 मीटर2
  2. 2162 मीटर2
  3. 1836 मीटर2
  4. 2384 मीटर2

Answer (Detailed Solution Below)

Option 4 : 2384 मीटर2

Quantitative Aptitude Question 9 Detailed Solution

Download Solution PDF

प्रयुक्त सूत्र

क्षेत्रफल = लंबाई × चौड़ाई

गणना

8-July-2012 Morning 1 1 Hindi Images Q7

बगीचा EFGH चित्र में दिखाया गया है। जहाँ EF = 220 मीटर और EH = 70 मीटर है।

पथ की चौड़ाई 4 मीटर है।

अब चार रंगीन कोनों को छोड़कर पथ का क्षेत्रफल

= [2 × (220 × 4)] + [2 × (70 × 4)]

= (1760 + 560) वर्ग मीटर

= 2320 वर्ग मीटर

अब, 4 वर्गाकार रंगीन कोनों का क्षेत्रफल:

4 × (4 × 4)

{∵ प्रत्येक वर्ग की भुजा = 4 मीटर}

= 64 वर्ग मीटर

पथ का कुल क्षेत्रफल = चार रंगीन कोनों को छोड़कर पथ का क्षेत्रफल + वर्गाकार रंगीन कोने

⇒ पथ का कुल क्षेत्रफल = 2320 + 64 = 2384 वर्ग मीटर

∴ विकल्प 4 सही उत्तर है।

दो उम्मीदवारों के बीच एक चुनाव में, जीतने वाले उम्मीदवार को वैध मतों में से 70 प्रतिशत मत प्राप्त हुए और वह 3630 मतों के बहुमत से जीता। यदि डाले गए कुल मतों में से 75 प्रतिशत मत वैध हैं, तो डाले गए मतों की कुल संख्या कितनी है?

  1. 15200
  2. 13000
  3. 16350
  4. 12100

Answer (Detailed Solution Below)

Option 4 : 12100

Quantitative Aptitude Question 10 Detailed Solution

Download Solution PDF

दिया गया है:

वैध मत = कुल मतों का 75%

विजयी उम्मीदवार = वैध मतों में से 70%

उसने 3630 मतों के बहुमत से जीत हासिल की

पराजित उम्मीदवार = वैध मतों का 30%

गणना:

माना कुल मतों की संख्या 100x है

वैध मत = कुल मतों का 75%

= 0.75 × 100x

= 75x

विजयी उम्मीदवार का बहुमत 3630 है,

तब, जीतने और हारने वाले उम्मीदवार के बीच का अंतर = वैध मतों का (70 % - 30 %)

= वैध मतों का 40%

वैध मत = 75x

तब,

= 0.40 × 75x

= 30x

इसलिए, विजयी उम्मीदवार का बहुमत 30x है,

30x = 3630

x = 121

मतों की कुल संख्या 100x है,

= 100 × 121

= 12100

उत्तर 12100 है।

निम्न में से कौनसी संख्या सबसे बड़ी है?

0.7,0.7¯,0.07¯,0.07

  1. 0.07
  2. 0.07¯
  3. 0.7
  4. 0.7¯

Answer (Detailed Solution Below)

Option 4 : 0.7¯

Quantitative Aptitude Question 11 Detailed Solution

Download Solution PDF

प्रयुक्त अवधारणा

a.b̅ = a.bbbbbb

a.0b̅ = a.0bbbb

गणना

0.7 = 0.700000......

0.7¯=0.77777

0.07¯=0.077777

0.07=0.070707

अब, 0.7777… या 0.7¯ सभी में सबसे बड़ा है।

एक 400 मीटर लंबी ट्रेन को, विपरीत दिशा से समानांतर ट्रैक पर 60 किलोमीटर प्रति घंटे की चाल से आती हुई एक 300 मीटर लंबी ट्रेन को पार करने में 15 सेकंड लगते हैं। लंबी वाली ट्रेन की चाल किलोमीटर प्रति घंटे में क्या है ?  

  1. 108
  2. 102
  3. 98
  4. 96

Answer (Detailed Solution Below)

Option 1 : 108

Quantitative Aptitude Question 12 Detailed Solution

Download Solution PDF

दिया गया

पहली ट्रेन की लंबाई (L1) = 400 मीटर

दूसरी ट्रेन की लंबाई (L2) = 300 मीटर

दूसरी ट्रेन की गति (S2) = 60 किमी/घंटा

एक दूसरे को पार करने में लगा समय (T) = 15 s

अवधारणा:

जब दो वस्तुएँ विपरीत दिशाओं में चलती हैं तो सापेक्ष गति उनकी गति का योग होती है।

गणना:

माना कि पहली ट्रेन की गति = x किमी/घंटा है

कुल लंबाई = 300 + 400

समय = 15 सेकंड

प्रश्न के अनुसार:

700/15 = (60 + x) × 5/18

28 × 6 = 60 + x

x = 108 किमी/घंटा.

इसलिए, लंबी ट्रेन की गति 108 किमी प्रति घंटा है।

यदि पेट्रोल की कीमत 40 रु. प्रति लीटर. से बढ़कर 60 रु. प्रति लीटर हो जाती है, तो एक व्यक्ति को अपने खपत में कितनी कमी करनी पड़ेगी ताकि उसका व्यय समान रहे?

  1. 66.67%
  2. 40%
  3. 33.33%
  4. 45%
  5. इनमें से कोई नहीं

Answer (Detailed Solution Below)

Option 3 : 33.33%

Quantitative Aptitude Question 13 Detailed Solution

Download Solution PDF

दिया हुआ :

यदि पेट्रोल की कीमत 40 रु. प्रति लीटर. से बढ़कर 60 रु. प्रति लीटर हो जाती हैI

गणना :

माना खपत 100 लीटर है।

जब पेट्रोल की कीमत 40 रु. है, तो व्यय = 100 × 40

⇒ 4,000 रु.

पेट्रोल की कीमत 60 रु. होने पर,

60 × खपत = 4,000. रु.

खपत = 4,000/60 = 66.67 लीटर

∴ अभीष्ट % कमी = 100 - 66.67 = 33.33%

u : v = 4 : 7 और v : w = 9 : 7। यदि u = 72, तो w का मान क्या है?

  1. 98
  2. 77
  3. 63
  4. 49

Answer (Detailed Solution Below)

Option 1 : 98

Quantitative Aptitude Question 14 Detailed Solution

Download Solution PDF

दिया गया है:

u : v = 4 : 7 and v : w = 9 : 7

प्रयुक्त सिद्धांत: इस प्रकार के प्रश्नों में, संख्या की गणना नीचे दिए गए सूत्र का उपयोग करके की जा सकती है

गणना:

u : v = 4 : 7 और v : w = 9 : 7

अनुपात को हल करने पर हमें प्राप्त होता है,

u v w = 36 63 49

u w = 36 49

तो u = 72,

w = 49 × 72/36 = 98

W का मान 98 है

1212+1213+1216 का मान क्या है?

  1. 36
  2. 37
  3. 39
  4. 38

Answer (Detailed Solution Below)

Option 2 : 37

Quantitative Aptitude Question 15 Detailed Solution

Download Solution PDF

उपाय:

1212+1213+1216

= 25/2 + 37/3 + 73/6

= (75 + 74 + 73)/6

= 222/6

= 37

 

1212+1213+1216

= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)

= 36 + 1 = 37

Get Free Access Now
Hot Links: teen patti real cash 2024 teen patti mastar teen patti 50 bonus