পরিমিতি MCQ Quiz in বাংলা - Objective Question with Answer for Mensuration - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Jun 28, 2025

পাওয়া পরিমিতি उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন পরিমিতি MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Mensuration MCQ Objective Questions

পরিমিতি Question 1:

যদি একটি বর্গক্ষেত্রের প্রতিটি বাহু 10% বৃদ্ধি করলে, ক্ষেত্রফলের শতকরা বৃদ্ধি হবে

  1. 10%
  2. 25%
  3. 21%
  4. 100%

Answer (Detailed Solution Below)

Option 3 : 21%

Mensuration Question 1 Detailed Solution

প্রদত্ত:

একটি বর্গক্ষেত্রের বাহু বৃদ্ধি = 10%

ব্যবহৃত সূত্র:

বৃদ্ধি = নতুন সংখ্যা - আসল সংখ্যা

% বৃদ্ধি = (বৃদ্ধি/আসল সংখ্যা) × 100

বর্গক্ষেত্রের ক্ষেত্রফল = বাহু2

গণনা:

ধরা যাক, বর্গক্ষেত্রের বাহু a

বাহু a সহ একটি বর্গক্ষেত্রের ক্ষেত্রফল = a2

বাহু a-এর 10% বৃদ্ধির পর = a + a-এর 10%

⇒ a(1 + 10/100) = a(1 + 1/10)

⇒ a(11/10) = 11a/10

বাহু a বৃদ্ধির পর বর্গক্ষেত্রের ক্ষেত্রফল = (11a/10)2

⇒ (11a/10) × (11a/10) = 121a2/100

⇒ 1.21a2

বর্গক্ষেত্রের ক্ষেত্রফলের শতকরা পরিবর্তন =[(1.21a2 - a2)/a2] × 100

⇒ [a2(1.21 - 1)/a2] × 100 = 0.21 × 100

⇒ 21%

∴ বর্গক্ষেত্রের ক্ষেত্রফলের শতকরা পরিবর্তন 21%

Alternate Method 

একটি নিয়মিত বহুভুজের শতকরা বৃদ্ধি = x + y + (xy/100)

বর্গক্ষেত্রে দৈর্ঘ্য এবং প্রস্থ একই, x = y

শতকরা বৃদ্ধি = x + x + (xx/100)

⇒ 2x + x2/100 = 2 × 10 + 10 × 10/100

⇒ 20 + 1 = 21%

∴ প্রয়োজনীয় শতকরা হল 21%

পরিমিতি Question 2:

একটি আয়তক্ষেত্রের দৈর্ঘ্য 15% বাড়লে এবং প্রস্থ 15% কমলে, ক্ষেত্রফলের শতকরা পরিবর্তন হবে

  1. \(\frac{3}{2}\)% increase
  2. \(2 \frac{2}{3}\)% decrease
  3. \(\frac{4}{9}\)% increase
  4. \(2 \frac{1}{4}\)% decrease

Answer (Detailed Solution Below)

Option 4 : \(2 \frac{1}{4}\)% decrease

Mensuration Question 2 Detailed Solution

পরিমিতি Question 3:

একটি সমকোণী ত্রিভুজে ছোট বাহুর দৈর্ঘ্যের সাথে দীর্ঘ বাহুর দৈর্ঘ্যের অনুপাত 5: 12। যদি অতিভুজের দৈর্ঘ্য 65 সেমি হয়, তাহলে ত্রিভুজের পরিসীমা কত?

  1. 150 সেমি
  2. 100 সেমি
  3. 82 সেমি
  4. এগুলোর কোনোটিই নয়

Answer (Detailed Solution Below)

Option 1 : 150 সেমি

Mensuration Question 3 Detailed Solution

প্রদত্ত:

একটি সমকোণী ত্রিভুজে:

ছোট বাহুর সাথে দীর্ঘ বাহুর অনুপাত = 5:12

অতিভুজের দৈর্ঘ্য = 65 সেমি

অনুসৃত সূত্র:

পিথাগোরাসের উপপাদ্য: অতিভুজ2 = ছোট বাহু2 + দীর্ঘ বাহু2

পরিসীমা = ছোট বাহু + দীর্ঘ বাহু + অতিভুজ

গণনা:

ধরি, ছোট বাহু = 5x এবং দীর্ঘ বাহু = 12x

অতিভুজ = 65 সেমি

⇒ অতিভুজ2 = ছোট বাহু2 + দীর্ঘ বাহু2

⇒ 652 = (5x)2 + (12x)2

⇒ 4225 = 25x2 + 144x2

⇒ 4225 = 169x2

⇒ x2 = 25

⇒ x = 5

ছোট বাহু = 5x = 5 × 5 = 25 সেমি

দীর্ঘ বাহু = 12x = 12 × 5 = 60 সেমি

পরিসীমা = ছোট বাহু + দীর্ঘ বাহু + অতিভুজ

⇒ পরিসীমা = 25 + 60 + 65 = 150 সেমি

∴ সঠিক উত্তর হল বিকল্প 1

পরিমিতি Question 4:

একটি সামান্তরিকের একটি বাহু 24 সেমি এবং সংশ্লিষ্ট উচ্চতা 6 সেমি। সামান্তরিকের ক্ষেত্রফল নির্ণয় করুন।

  1. 144 সেমি2
  2. 120সেমি2
  3. 12 সেমি2
  4. 30 সেমি2

Answer (Detailed Solution Below)

Option 1 : 144 সেমি2

Mensuration Question 4 Detailed Solution

পরিমিতি Question 5:

একটি গোলকের পৃষ্ঠের ক্ষেত্রফল নির্ণয় করুন যার ব্যাস 84 সেমি।

  1. 7056π সেমি2
  2. 7733π সেমি2
  3. 6539π সেমি2
  4. 7035π সেমি2

Answer (Detailed Solution Below)

Option 1 : 7056π সেমি2

Mensuration Question 5 Detailed Solution

Top Mensuration MCQ Objective Questions

একটি বর্গাকার মাঠের চারপাশে রাস্তার প্রস্থ 4.5 মিটার এবং এর ক্ষেত্রফল 105.75 বর্গ মিটার হয়। এখন 100 টাকা প্রতি মিটার হারে ক্ষেতের বেড়া দেওয়ার জন্য খরচ নির্ণয় করুন। 

  1. 275 টাকা 
  2. 550 টাকা
  3. 600 টাকা
  4. 400 টাকা 

Answer (Detailed Solution Below)

Option 2 : 550 টাকা

Mensuration Question 6 Detailed Solution

Download Solution PDF

প্রদত্ত:

একটি বর্গাকার মাঠের চারপাশে রাস্তার প্রস্থ = 4.5 মি 

রাস্তার ক্ষেত্রফল = 105.75 মি2

অনুসৃত সূত্র:

একটি বর্গক্ষেত্রের পরিধি = 4 × বাহু

একটি বর্গক্ষেত্রের ক্ষেত্রফল = (বাহু)2

গণনা:

F2 SSC Pranali 13-6-22 Vikash kumar D6

ধরুন, মাঠের প্রতিটি বাহু = x

তারপর, রাস্তা বরাবর প্রতিটি বাহু = x + 4.5 + 4.5 = x + 9

অতএব, (x + 9)2 - x2 = 105.75

⇒ x2 + 18x + 81 - x2 = 105.75

⇒ 18x + 81 = 105.75

⇒ 18x = 105.75 - 81 = 24.75

⇒ x = 24.75/18 = 11/8

∴ বর্গাকার মাঠের প্রতিটি বাহু = 11/8 মি 

পরিধি = 4 × (11/8) = 11/2 মি

সুতরাং, বেড়া দিতে মোট খরচ = (11/2) × 100 = 550 টাকা। 

∴ মাঠে বেড়া দিতে মোট খরচ হয় 550 টাকা।  

Shortcut Trickএই ধরনের প্রশ্নে, 

বর্গক্ষেত্রের বাইরের রাস্তার ক্ষেত্রফল হল,

⇒ (2a + 2w)2w = 105.75

এখানে, a হল একটি বর্গক্ষেত্রের একটি বাহু এবং w হল একটি বর্গক্ষেত্রের প্রস্থ

⇒ (2a + 9)9 = 105.75

⇒ 2a + 9 = 11.75

⇒ 2a = 2.75

একটি বর্গক্ষেত্রের পরিধি = 4a

⇒ 2 × 2a = 2 × 2.75 = 5.50

বেড়া দিতে খরচ হয় = 5.50 × 100 = 550

মাঠে বেড়া দিতে মোট খরচ হয় 550 টাকা।   

কোনো বৃত্তের একটি চাপের দৈর্ঘ্য 4.5π সেমি এবং এটি দ্বারা গঠিত সেক্টরের ক্ষেত্রফল 27π cmহয়। বৃত্তের ব্যাস (সেমিতে) কত হবে? 

  1. 12
  2. 24
  3. 9
  4. 18

Answer (Detailed Solution Below)

Option 2 : 24

Mensuration Question 7 Detailed Solution

Download Solution PDF

প্রদত্ত : 

কোনো বৃত্তের একটি চাপের দৈর্ঘ্য 4.5π সেমি 

এটি দ্বারা গঠিত সেক্টরের ক্ষেত্রফল 27π cmহয় 

অনুসৃত সূত্র : 

সেক্টরের ক্ষেত্রফল = θ/360 × πr2

চাপের দৈর্ঘ্য = θ/360 × 2πr

গণনা : 

প্রশ্ন অনুযায়ী,

⇒ 4.5π = θ/360 × 2πr   -----------------(1)

⇒ 27π = θ/360 × πr2       ---------------(2)

সমীকরণ(1) এবং সমীকরণ (2) সমাধান করে  : 

⇒ 4.5/27 = 2/r

⇒ r = (27 × 2)/4.5

⇒ r = 12
⇒ d = 2r = 24

∴ সঠিক উত্তর হল 24 

যদি একটি সমবাহু ত্রিভুজের বাহু 34% বৃদ্ধি করা হয়, তাহলে এর ক্ষেত্রফল কত শতাংশ বৃদ্ধি পাবে?

  1. 70.65%
  2. 79.56%
  3. 68.25%
  4. 75.15%

Answer (Detailed Solution Below)

Option 2 : 79.56%

Mensuration Question 8 Detailed Solution

Download Solution PDF

প্রদত্ত:

একটি সমবাহু ত্রিভুজের বাহু 34% বৃদ্ধি পেয়েছে।

অনুসৃত সূত্র:

কার্যকরী বৃদ্ধি % = বৃদ্ধি% + বৃদ্ধি% + (বৃদ্ধি2 /100)

গণনা:

কার্যকরী বৃদ্ধি = 34 + 34 + {(34 × 34)/100}

⇒ 68 + 11.56 = 79.56%

∴ সঠিক উত্তর হল 79.56% 

একটি তার-কে বাঁকিয়ে 22 সেন্টিমিটার বাহুবিশিষ্ট একটি বর্গক্ষেত্র তৈরি করা হয়েছে। যদি তারটিকে একটি বৃত্ত গঠনের জন্য পুনরায় বাঁকানো হয়, তাহলে এটির ব্যাসার্ধ কত হবে?

  1. 22 সেমি
  2. 14 সেমি
  3. 11 সেমি
  4. 7 সেমি

Answer (Detailed Solution Below)

Option 2 : 14 সেমি

Mensuration Question 9 Detailed Solution

Download Solution PDF

প্রদত্ত:

বর্গক্ষেত্রের বাহুর দৈর্ঘ্য = 22 সেমি

অনুসৃত সূত্র:

বর্গক্ষেত্রের পরিসীমা = 4 × a (যেখানে a = বর্গক্ষেত্রের বাহু)

বৃত্তের পরিধি = 2 × π × r (যেখানে r = বৃত্তের ব্যাসার্ধ)

গণনা:

ধরি, বৃত্তের ব্যাসার্ধ হল r

⇒ বর্গক্ষেত্রের পরিসীমা = 4 × 22 = 88 সেমি

⇒ বৃত্তের পরিধি = 2 × π × r

⇒ 88 = 2 × (22/7) × r

⇒ \(r = {{88\ \times\ 7 }\over {22\ \times \ 2}}\)

⇒ r = 14 সেমি

∴ নির্ণেয় ফলাফল 14 সেমি হবে।

একটি নিরেট গোলার্ধের ব্যাসার্ধ 21 সেমি। এটি গলিয়ে একটি সিলিন্ডার তৈরি করা হয় যাতে এর বক্রপৃষ্ঠের ক্ষেত্রফলের সাথে মোট পৃষ্ঠের ক্ষেত্রফলের অনুপাত 2 ∶ 5 হয়। এর ভূমির ব্যাসার্ধ (সেমিতে) কত (π = \(\frac{{22}}{7}\) ব্যবহার করুন )?

  1. 23
  2. 21
  3. 17
  4. 19

Answer (Detailed Solution Below)

Option 2 : 21

Mensuration Question 10 Detailed Solution

Download Solution PDF

প্রদত্ত:

একটি নিরেট গোলার্ধের ব্যাসার্ধ 21 সেমি।

সিলিন্ডারের বক্রপৃষ্ঠের ক্ষেত্রফলের সাথে এর মোট পৃষ্ঠের ক্ষেত্রফলের অনুপাত হল 2/5

অনুসৃত সূত্র:

সিলিন্ডারের বক্রপৃষ্ঠের ক্ষেত্রফল = 2πRh

সিলিন্ডারের মোট পৃষ্ঠের ক্ষেত্রফল = 2πR(R + h)

সিলিন্ডারের আয়তন = πR 2 h

নিরেট গোলার্ধের আয়তন = 2/3πr³

(যেখানে r হল একটি নিরেট গোলার্ধের ব্যাসার্ধ এবং R হল একটি সিলিন্ডারের ব্যাসার্ধ)

গণনা:

প্রশ্ন অনুযায়ী,

CSA/TSA = 2/5

[2πRh]/[2πR(R + h)] = 2/5

h/(R + h) = 2/5

5h = 2R + 2h

h = (2/3)R.......(1)

সিলিন্ডারের আয়তন এবং একটি নিরেট গোলার্ধের আয়তন সমান।

πR2 h = (2/3)πr3

⇒ R2 x ( 2/3) R = (2/3) x (21)3

R3 = (21)3

⇒ R = 21 সেমি

এর ভূমির ব্যাসার্ধ (সেমিতে) 21 সেমি।

একই শীর্ষবিন্দু ভাগ করা একটি আয়তঘনকের তিনটি তলের পৃষ্ঠের ক্ষেত্রফল হল 20 মি2 , 32 মি2 এবং 40 মিহলে, আয়তঘনকের আয়তন কত?

  1. 92 মি3
  2. √3024 মি3
  3. 160 মি3
  4. 184 মি3

Answer (Detailed Solution Below)

Option 3 : 160 মি3

Mensuration Question 11 Detailed Solution

Download Solution PDF

প্রদত্ত:

L × B = 20 বর্গমিটার

B × H = 32 বর্গমিটার

L × H = 40 বর্গমিটার

যেখানে L = দৈর্ঘ্য, B = প্রস্থ,  H = উচ্চতা

প্রযুক্ত সূত্র:

আয়তঘনকের সমগ্র তলের ক্ষেত্রফল =  L × B + B × H + L × H

আয়তঘনকের আয়তন = LBH

সমাধান:

প্রশ্নানুসারে, 

⇒ L × B × B × H × L × H = 20 × 32 × 40

⇒ L2B2H2 = 25600

⇒ LBH = 160

∴ আয়তঘনকের আয়তন হল 160 মি3

8 সেমি বাহুবিশিষ্ট একটি নিরেট ঘনক আংশিকভাবে জলে ভরা একটি আয়তক্ষেত্রাকার পাত্রে ফেলা হয়, যার দৈর্ঘ্য 16 সেমি, প্রস্থ 8 সেমি এবং উচ্চতা 15 সেমি। যদি ঘনকটি সম্পূর্ণরূপে নিমজ্জিত হয়, তাহলে জলের স্তরের কত সেমি বৃদ্ধি হবে?

  1. 6
  2. 4
  3. 2
  4. 5

Answer (Detailed Solution Below)

Option 2 : 4

Mensuration Question 12 Detailed Solution

Download Solution PDF

প্রদত্ত:

ঘনকের প্রতিটি বাহু = 8 সেমি

আয়তক্ষেত্রাকার পাত্রটির দৈর্ঘ্য 16 সেমি, প্রস্থ 8 সেমি এবং উচ্চতা 15 সেমি

অনুসৃত সূত্র:

ঘনকের আয়তন = (বাহু)3

একটি আয়তঘনকের আয়তন = দৈর্ঘ্য × প্রস্থ × উচ্চতা

গণনা:

ঘনকের আয়তন = আয়তক্ষেত্রাকার পাত্রের আয়তন যার দৈর্ঘ্য 16 সেমি, প্রস্থ 8 সেমি এবং জলের স্তরের বর্ধিত উচ্চতা

ধরা যাক, জলস্তরের বর্ধিত উচ্চতা = x সেমি

সুতরাং, 83 = 16 × 8 × x

⇒ 512 = 128 × x

⇒ x = 512/128 = 4

∴ জলস্তরের বৃদ্ধি 4 সেমি

যদি একটি গাড়ির চাকার ব্যাসার্ধ 14 সেমি হয়, তাহলে 132 কিমি/ঘন্টা গতিবেগ বজায় রাখার জন্য চাকাটি প্রতি মিনিটে কতবার আবর্তিত হবে? 

  1. 2500
  2. 1500
  3. 5500
  4. 3500

Answer (Detailed Solution Below)

Option 1 : 2500

Mensuration Question 13 Detailed Solution

Download Solution PDF

প্রদত্ত:

গাড়ির চাকার ব্যাসার্ধ = 14 সেমি

গাড়ির গতিবেগ = 132 কিমি/ঘন্টা

অনুসৃত সূত্র:

চাকার পরিধি = \(2\pi r\)

1 কিমি = 1000 মি

1 মি = 100 সেমি

1 ঘন্টা = 60 মিনিট

গণনা:

এক মিনিটে চাকা দ্বারা অতিক্রান্ত দূরত্ব = = 220000 সেমি

চাকার পরিধি = \(2\pi r\)\(2\times \frac{22}{7} \times 14\) = 88 সেমি

এক আবর্তনে চাকা দ্বারা অতিক্রান্ত দূরত্ব = 88 সেমি

∴ এক মিনিটে আবর্তনের সংখ্যা = \(\frac{220000}{88}\) = 2500

∴ সুতরাং, সঠিক উত্তর হল 2500

একটি আয়তঘনকের দৈর্ঘ্য, প্রস্থ এবং উচ্চতার যোগফল 21 সেমি এবং এর কর্ণের দৈর্ঘ্য 13 সেমি। আয়তঘনকের মোট পৃষ্ঠতলের ক্ষেত্রফল কত হবে?

  1. 272 সেমি2
  2. 240 সেমি2
  3. 314 সেমি2
  4. 366 সেমি2

Answer (Detailed Solution Below)

Option 1 : 272 সেমি2

Mensuration Question 14 Detailed Solution

Download Solution PDF

প্রদত্ত:

একটি আয়তঘনকের দৈর্ঘ্য, প্রস্থ এবং উচ্চতার সমষ্টি = 21 সেমি

কর্ণের দৈর্ঘ্য (d) = 13 সেমি

অনুসৃত সূত্র:

d2 = l2 + b2 + h2

আয়তঘনকের পৃষ্ঠতলের ক্ষেত্রফল = 2(lb + hb +lh)

গণনা:

⇒ l2 + b2 + h2 = 132 = 169

প্রশ্ন অনুযায়ী,

⇒ (l + b + h)2 = 441

⇒ l2 + b2 + h2 + 2(lb + hb +lh) = 441

⇒ 2(lb + hb +lh) = 441 - 169 = 272

∴ সঠিক উত্তর 272 সেমি2

3 ∶ 4 ∶ 5 অনুপাতের  বাহু বিশিষ্ট তিনটি ঘনক গলিয়ে একটি একক ঘনক তৈরি হয় যার কর্ণের দৈর্ঘ্য 18√3 সেমি। তিনটি ঘনকের বাহুগুলি হল:

  1. 21 সেমি, 28 সেমি এবং 35 সেমি
  2. 9 সেমি, 12 সেমি এবং 15 সেমি
  3. 18 সেমি, 24 সেমি এবং 30 সেমি
  4. 12 সেমি, 16 সেমি এবং 20 সেমি

Answer (Detailed Solution Below)

Option 2 : 9 সেমি, 12 সেমি এবং 15 সেমি

Mensuration Question 15 Detailed Solution

Download Solution PDF

প্রদত্ত:

3 ∶ 4 ∶ 5 অনুপাতের বাহু বিশিষ্ট তিনটি ঘনক গলিয়ে একটি একক ঘনক তৈরি হয় যার কর্ণের দৈর্ঘ্য 18√3 সেমি।

অনুসৃত ধারণা:

একটি ঘনকের কর্ণ = a√3 (যেখানে a হল বাহু)

গণনা:

ধরা যাক, ঘনকগুলির s বাহু 3x সেমি, 4x সেমি এবং 5x সেমি 

প্রশ্ন অনুযায়ী,

নতুন ঘনকের আয়তন হল

(3x)3 +( 4b)3 +( 5c)3 = 216 x3.

⇒ বাহু = 6x

কর্ণ হল 6x√3

⇒  6x√3 = 18√3

⇒ x = 3

ঘনকগুলির বাহুগুলি 9 সেমি, 12 সেমি এবং 15 সেমি হবে

∴ সঠিক বিকল্পটি হল 2

Get Free Access Now
Hot Links: teen patti club teen patti gold download yono teen patti