त्रिभुज ABC में \(\rm \frac{a}{\cos A}=\frac{b}{\cos B}=\frac{c}{\cos C}\) दिया गया है। यदि a = 6 cm है, तो त्रिभुज का क्षेत्रफल कितना है?

This question was previously asked in
NDA-II 2024 (Maths) Official Paper (Held On: 01 Sept, 2024)
View all NDA Papers >
  1. 9√3 वर्ग सेमी
  2. 12 वर्ग सेमी
  3. 18√3 वर्ग सेमी
  4. 24 वर्ग सेमी

Answer (Detailed Solution Below)

Option 1 : 9√3 वर्ग सेमी
Free
NDA 01/2025: English Subject Test
5.3 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

स्पष्टीकरण:

दिया गया,

\(\rm \frac{a}{\cos A}=\frac{b}{\cos B}=\frac{c}{\cos C}\)

\(\frac{a}{(\frac{b^2 + c^2 -a^2}{2bc})} = \frac{b}{(\frac{a^2 + c^2 -b^2}{2ac})} =\frac{c}{(\frac{a^2 + b^2 -c^2}{2ab})} \)

⇒b2+ c 2 – a 2 = c 2 + a 2 – b 2 = a 2 + b 2 – c 2

⇒ a 2 = b 2 = c  

⇒ a = b = c

अतः ABC एक समबाहु त्रिभुज है

समबाहु त्रिभुज की भुजा a = 6 cm

समबाहु त्रिभुज का क्षेत्रफल है,

\( \text{Area} = \frac{\sqrt{3}}{4} a^2 \)

\( \text{Area} = \frac{\sqrt{3}}{4} \times 6^2 \)

\( \text{Area} = \frac{\sqrt{3}}{4} \times 36 \)

\( \text{Area} = 9\sqrt{3} \, \text{cm}^2 \)

∴ त्रिभुज का क्षेत्रफल 9 × √3 वर्ग सेमी है।

Latest NDA Updates

Last updated on May 30, 2025

->UPSC has released UPSC NDA 2 Notification on 28th May 2025 announcing the NDA 2 vacancies.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced for cycle 2. The written examination will be held on 14th September 2025.

-> Earlier, the UPSC NDA 1 Exam Result has been released on the official website.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Properties of Triangles Questions

Get Free Access Now
Hot Links: teen patti wealth teen patti 3a teen patti win