Question
Download Solution PDFComprehension
निम्न दो (02) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए :
माना कि 2sinα + cosα = 2 जहाँ 0 < α < 90° है।
tanα किसके बराबर है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFगणना:
हमें दिया गया है:
\( 2\sin(\alpha) + \cos(\alpha) = 2 \)
\( \cos(\alpha) = 2(1 - \sin(\alpha)) \)
\( \cos^2(\alpha) = 4(1 - \sin(\alpha))^2 \)
सर्वसमिका \(\cos^2(\alpha) = 1 - \sin^2(\alpha) \) का प्रयोग करने पर,
\( 1 - \sin^2(\alpha) = 4(1 - 2\sin(\alpha) + \sin^2(\alpha)) \)
\( 1 - \sin^2(\alpha) = 4 - 8\sin(\alpha) + 4\sin^2(\alpha) \)
पदों को पुनर्व्यवस्थित करके एक द्विघात समीकरण बनाने पर,
\( 5\sin^2(\alpha) - 8\sin(\alpha) + 3 = 0 \)
द्विघात सूत्र का उपयोग कर:
\( \sin(\alpha) = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(5)(3)}}{2(5)} \)
\( \sin(\alpha) = \frac{8 \pm \sqrt{64 - 60}}{10} \)
\( \sin(\alpha) = \frac{8 \pm 2}{10} \)
\( \sin(\alpha) = 1 \) या \( \sin(\alpha) = \frac{3}{5} \)
चूँकि \(0^\circ < \alpha < 90^\circ \), हम \(\sin(\alpha) = \frac{3}{5} \) चुनते हैं
\( \cos^2(\alpha) = 1 - \sin^2(\alpha) = 1 - \left( \frac{3}{5} \right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \)
\( \cos(\alpha) = \frac{4}{5} \)
\( \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \)
∴ सही उत्तर विकल्प (c) है।
Last updated on Jul 8, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.