Question
Download Solution PDFएक रेखा निर्देशक अक्षों की धनात्मक दिशाओं के साथ α, β और γ कोण बनाती है। यदि \(\vec{a}=(\sin^2 \alpha)\hat{i} + (\sin^2 \beta)\hat{j} + (\sin^2 \gamma)\hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} + \hat{k}\) है, तो \(\vec{a}.\vec{b}\) किसके बराबर है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFगणना:
दिया गया है,
\( \cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1 \)
सर्वसमिका \( \cos^2(x) = 1 - \sin^2(x) \) का उपयोग करते हुए, हम प्रतिस्थापित करते हैं:
\( (1 - \sin^2(\alpha)) + (1 - \sin^2(\beta)) + (1 - \sin^2(\gamma)) = 1 \)
समीकरण को सरल करने पर:
\( 3 - (\sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma)) = 1 \)
साइन पदों को अलग करने के लिए पुनर्व्यवस्थित करने पर:
\( \sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma) = 2 \)
अब, अदिश गुणनफल की गणना करने पर:
\( \vec{a} \cdot \vec{b} = \sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma) = 2 \)
∴ \( \vec{a} \cdot \vec{b} \) का मान 2 है।
इसलिए, सही उत्तर विकल्प 4 है।
Last updated on Jul 8, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.