Integration using Partial Fractions MCQ Quiz - Objective Question with Answer for Integration using Partial Fractions - Download Free PDF

Last updated on Jun 27, 2025

Latest Integration using Partial Fractions MCQ Objective Questions

Integration using Partial Fractions Question 1:

Let f(x)=2x(x2+1)(x2+3)dx.

If f(3)=12(loge5loge6), then f(4) is equal to

  1. 12(loge17loge19)
  2. loge17 - loge18
  3. 12(loge19loge17)
  4. loge19 - loge20

Answer (Detailed Solution Below)

Option 1 : 12(loge17loge19)

Integration using Partial Fractions Question 1 Detailed Solution

Calculation:

We know that the integral is of the form:

f(x)=12loge(x2+3x2+1)+C

Now, we substitute the given value of f(3) to find the constant C :

⇒ f(3)=12loge(65)+C

We are given that:

⇒ f(3)=12(loge5loge6)

Equating the two expressions for f(3):

⇒ 12loge(65)+C=12(loge5loge6)

Since both sides are equal, we conclude that C = 0 .

Thus, the function becomes:

⇒ f(x)=12loge(x2+3x2+1)

Now, we can calculate f(4):

⇒ f(4)=12loge(16+316+1)=12loge(1917)

Thus, the value of f(4) is:

⇒ 12loge(1917)

 12(loge19loge17)

Hence, the correct answer is Option 1.

Integration using Partial Fractions Question 2:

2x+3x3+x22xdx=?

  1. 53log|x1|+32log|x|+16log|x+2|+c
  2. 53log|x1|32log|x|16log|x+2|+c
  3. 53log|x1|+32log|x|16log|x+2|+c
  4. 53log|x1|32log|x|+16log|x2|+c
  5. 53log|x1|32log|x|+c

Answer (Detailed Solution Below)

Option 2 : 53log|x1|32log|x|16log|x+2|+c

Integration using Partial Fractions Question 2 Detailed Solution

Given:

2x+3x3+x22xdx

Concept:

Use concept of partial fractions

f(x)g(x)h(x)=Ag(x)+Bh(x)

And use formula of integration

1x dx=log|x|+c

Calculation:

2x+3x3+x22xdx

=2x+3x(x1)(x+2)dx

Use concept of partial fractions

2x+3x(x1)(x+2)=Ax+Bx1+Cx+2

Now, Cross multiply by denominators 

2x+3=A(x2+x2)+B(x2+2x)+C(x2x)

Compare the coefficients on both the sides.

A+B+C=0 .........(1)

A+2BC=2 ...........(2) and

2A=3

A=32

On adding equation (1) and (2)

2A+3B=2

Put value of A then

2×32+3B=2

B=53

Now put the value of A and B in equation (1) then we get

C=16

Now put all these values in integral then 

2x+3x3+x22xdx

=32.1x dx+53.1x1 dx+16.1x+2 dx

=32log|x|+53log|x1|16log|x+2|+c

=53log|x1|32log|x|16log|x+2|+c

Hence the option (2) is correct.

Integration using Partial Fractions Question 3:

x(x1)(x2) dx = _______ + C.

  1. log|(x - 1) (x - 2)|
  2. log|(x2)2x1|
  3. log|(x1x2)2|
  4. log|(x1)2x2|

Answer (Detailed Solution Below)

Option 2 : log|(x2)2x1|

Integration using Partial Fractions Question 3 Detailed Solution

Calculation:

Given:

x(x1)(x2)dx

x(x1)(x2)=Ax1+Bx2

x=A(x2)+B(x1)

1=A(12)+B(11)A=1

2=A(22)+B(21)B=2

The integral becomes:

(1x1+2x2)dx

1x1dx+21x2dx

ln|x1|+2ln|x2|+C

ln|(x2)2x1|+C

Hence option 2 is correct

Integration using Partial Fractions Question 4:

Let f(x) = x(x2+1)(x2+3)dx. If f(3) = 14log(56),then f(0) = 

  1. 14log(13)
  2. 0
  3. 12log(13)
  4. log(13)

Answer (Detailed Solution Below)

Option 1 : 14log(13)

Integration using Partial Fractions Question 4 Detailed Solution

Calculation

Given:

Let f(x)=x(x2+1)(x2+3)dx

Using partial fraction decomposition:

x(x2+1)(x2+3)=Ax+Bx2+1+Cx+Dx2+3

Since the numerator is just 'x', B and D must be zero.

x(x2+1)(x2+3)=Axx2+1+Cxx2+3

Multiplying both sides by (x2+1)(x2+3):

x=Ax(x2+3)+Cx(x2+1)

x=Ax3+3Ax+Cx3+Cx

x=(A+C)x3+(3A+C)x

Comparing coefficients:

A+C=0C=A

3A+C=1

Substituting C=A:

3AA=1

2A=1A=12

C=12

f(x)=(1/2xx2+11/2xx2+3)dx

f(x)=12xx2+1dx12xx2+3dx

Let u=x2+1du=2xdx

Let v=x2+3dv=2xdx

f(x)=14duu14dvv

f(x)=14ln|u|14ln|v|+K

f(x)=14ln|x2+1|14ln|x2+3|+K

f(x)=14ln|x2+1x2+3|+K

Given f(3)=14log(56)

f(3)=14ln|32+132+3|+K

f(3)=14ln|1012|+K

f(3)=14ln|56|+K

14log(56)=14log(56)+KK=0

f(x)=14ln|x2+1x2+3|

Find f(0):

f(0)=14ln|02+102+3|

f(0)=14ln|13|

f(0)=14log(13)

Hence option 1 is correct

Integration using Partial Fractions Question 5:

If log(1+x4)x3dx=f(x)log(1g(x))+tan1(h(x))+c, then h(x)[f(x)+f(1(x))]=

  1. h(x)g(x)
  2. g(x)2
  3. g(x)+g(x)
  4. g(x)h(x)

Answer (Detailed Solution Below)

Option 2 : g(x)2

Integration using Partial Fractions Question 5 Detailed Solution

Calculation

Given the integral:

log(1+x4)x3dx=f(x)log(1g(x))+tan1(h(x))+c

Let u=log(1+x4) and dv=1x3dx.

Then du=4x31+x4dx and v=12x2.

Using integration by parts:

log(1+x4)x3dx=uvvdu

=log(1+x4)2x2(12x2)4x31+x4dx

=log(1+x4)2x2+2x1+x4dx

Let x2=t, so 2xdx=dt.

The integral becomes:

2x1+x4dx=dt1+t2=tan1(t)+C=tan1(x2)+C

log(1+x4)x3dx=log(1+x4)2x2+tan1(x2)+C

Comparing with f(x)log(1g(x))+tan1(h(x))+c:

f(x)=12x2

g(x)=1+x4

h(x)=x2

f(1x)=12(1x)2=x22

f(x)+f(1x)=12x2+x22=1+x42x2

h(x)[f(x)+f(1x)]=x2(1+x42x2)=1+x42

h(x)[f(x)+f(1x)]=1+x42=g(x)2

Hence option 2 is correct

Top Integration using Partial Fractions MCQ Objective Questions

Evaluate: dxx(x+2)

  1. 12log|2xx+2|+C
  2. 12log|2xx+2|+C
  3. 12log|xx+2|+C
  4. 12log|xx+2|+C

Answer (Detailed Solution Below)

Option 4 : 12log|xx+2|+C

Integration using Partial Fractions Question 6 Detailed Solution

Download Solution PDF

Concept:

Partial Fraction:

Factors in the denominator

Corresponding Partial Fraction

(x - a)

Axa

(x – b)2

Axb+B(xb)2

(x - a) (x – b)

A(xa)+B(xb)

(x – c)3

Axc+B(xc)2+C(xc)3

(x – a) (x2 – a)

A(xa)+Bx+C(x2a)

(ax2 + bx + c)

Ax+B(ax2+bx+c)

Calculation:

Here we have to find the value of dxx(x+2)

Let 1x(x+2)=Ax+Bx+2

⇒ 1 = A (x + 2) + B x --------(1)

By putting x = 0 on both the sides of (1) we get A = 1/2

By putting x = - 2 on both the sides of (1) we get B = - 1/2

1x(x+2)=12x12x+4

dxx(x+2)=12dxx12dxx+2

As we know that dxx=log|x|+C  where C is a constant

dxx(x+2)=12log|xx+2|+Cwhere C is a constant

What is dxx(x2+1) equal to?

  1. 12ln(x2x2+1)+C
  2. ln(x2x2+1)+C
  3. 32ln(x2x2+1)+C
  4. 12ln(x2+1x2)+C

Answer (Detailed Solution Below)

Option 1 : 12ln(x2x2+1)+C

Integration using Partial Fractions Question 7 Detailed Solution

Download Solution PDF

Formula used:

1xdx=logx+C

logax - logay = logaxy

Calculation:

dxx(x2+1)

⇒ dxxxdxx2+1

 dxx122xdxx2+1

ln x - 12ln|1+x2| + c

⇒ 12lnx212ln|1+x2| + c

 12ln(x2x2+1)+C

∴ dxx(x2+1) is equal to 

12ln(x2x2+1)+C.

Evaluate: dx(x2)(x1)

  1. log|(x2)(x+1)|+c
  2. log|(x2)(x1)|+c
  3. log|(x1)(x2)|+c
  4. log|(x+2)(x1)|+c

Answer (Detailed Solution Below)

Option 2 : log|(x2)(x1)|+c

Integration using Partial Fractions Question 8 Detailed Solution

Download Solution PDF

Concept:

Using partial fraction method

1(xa).(xb) = A(xa) + B(xb)

dxx=log|x|+c

Calculation:

I = dx(x2)(x1)

⇒ 1(x2).(x1) = A(x2) + B(x1)

⇒ 1 = A(x - 1) + B(x - 2)

Compair cofficient both sides

Cofficient of x is  A + B = 0

Coffiecient of constant 1 = -A - 2B

Solving the equation we get 

A = 1, B = -1

⇒ dx(x2)(x1) = dx(x2) - dx(x1)

⇒ log|x - 2| - log|x - 1| + c       

log|(x2)(x1)|+c                             [∵ log m - log n = log(mn)]

5xx2+3x4dx = 

  1. ln (x - 1) + 4 ln (x + 4) + c
  2. ln (x - 1) - ln (x + 4) + c
  3. ln (x + 1) - 4 ln (x - 4) + c
  4. 4 ln (x + 1) - ln (x - 4) + c

Answer (Detailed Solution Below)

Option 1 : ln (x - 1) + 4 ln (x + 4) + c

Integration using Partial Fractions Question 9 Detailed Solution

Download Solution PDF

Concept:

Integral property:

  • ∫ xn dx = xn+1n+1+ C ; n ≠ -1
  • 1xdx=lnx + C
  • ∫ edx = ex+ C
  • ∫ adx = (ax/ln a) + C ; a > 0,  a ≠ 1
  • ∫ sin x dx = - cos x + C
  • ∫ cos x dx = sin x + C

 

Calculation:

I = 5xx2+3x4dx

I = 5x(x1)(x+4)dx

I = (x+4)+(4x4)(x1)(x+4)dx

I = 1x1dx+4x+4dx

I = ln (x - 1) + 4 ln (x + 4) + c

2x3(x2+7)2dx  is equal to

  1. log|x2+7|7(x2+7)+C
  2. log|x2+7|+7(x2+7)+C
  3. log|x2+7|+14(x2+7)+C
  4. log|x2+7|14(x2+7)+C

Answer (Detailed Solution Below)

Option 2 : log|x2+7|+7(x2+7)+C

Integration using Partial Fractions Question 10 Detailed Solution

Download Solution PDF

Concept:

  • 1x+adx=log|x+a|+C
  • 1(x+a)ndx=1(1n)(x+a)n+1+C

Calculation:

To solve: 2x3(x2+7)2dx 

Let us put x2 = t ⇒2xdx = dt in 2x3(x2+7)2dx  

⇒ 2x3(x2+7)2dx=t(t+7)2dt

This integrand is a proper rational fraction. therefore, by using the form of partial fraction, we write

⇒ t(t+7)2=At+7+B(t+7)2

⇒ t = At + 7A + B 

By comparing coefficient of t and constant terms on both sides, we get A = 1 and 7A + B = 0

By solving these equation, we get  A = 1 and B = -7

t(t+7)2=1t+77(t+7)2

⇒ t(t+7)2dt=1t+7dt7(t+7)2dt

⇒ t(t+7)2dt=log|t+7|+7(t+7)+C 

Now put t = x2 in the above equation we get

⇒ 2x3(x2+7)2dx=log|x2+7|+7(x2+7)+C

Hence, option 2 is correct.

0π2cos2xsinx+cosx dx = _______

  1. 122ln|3+22|
  2. 122ln|1+2|log (√2 + 1)
  3. log (1 + 2√2)
  4. log (3 − 2√2)

Answer (Detailed Solution Below)

Option 1 : 122ln|3+22|

Integration using Partial Fractions Question 11 Detailed Solution

Download Solution PDF

Concept Used:
abf(x)dx=abf(a+bx)dx
also, sin (π/2 - x) = cos x 
and cos (π/2 - x= sin x 
sinx=2tanx/21+tan2x/2, cosx=1tan2x/21+tan2x/2

Also, dxa2x2=12alog|a+xax|+c

Calculation:

Let I=0π/2cos2xsinx+cosxdx(1)
 ⇒ I=0π/2cos2(π/2x)sin(π2x)+cos(π2x)dx
 ⇒ I=0π/2sin2xsinx+cosxdx(2)
Adding (1) and (2)
 ⇒ 2I=0π/2sin2x+cos2xsinx+cosxdx
 ⇒ 2I=0π/21sinx+cosxdx

Now, let I1=1sinx+cosxdx

I1=dx2tanx/21+tan2x/2+1tan2x/21+tan2x/2
⇒ I1=1+tan2x/22tanx/2+1tan2x/2dx

 I1=sec2x/2dx2tanx/2+1tan2x/2

Put tan x/2 = t
  12sec2x/2=dtdx
  sec2x/2dx=2dt

⇒ I1=2dt2t+1t2
⇒ I=2dtt22t1
⇒ I1=2dtt22t1+11
⇒ I=2dt(t1)2(2)2
⇒ I=2dt(2)2(t1)2
 ⇒I1 =2122log|2+t12t+1|+c
⇒ I=12log|2+tanx/212tanx/2+1|+c
Using I1, in I

I=122[ln|2+tanπ/412tanπ/4+1|ln|2+tan012tan0+1|]
I=122[ln|22|ln|212+1|]
I=122[ln|(2+1)2(2)212|]
I=122ln|2+1+2221|I=122ln|3+22|

Evaluate: dxex1

  1. log|ex1ex|+C
  2. log|ex1ex|+C
  3. log|ex+1ex|+C
  4. None of these

Answer (Detailed Solution Below)

Option 2 : log|ex1ex|+C

Integration using Partial Fractions Question 12 Detailed Solution

Download Solution PDF

Concept:

Partial Fraction:

Factors in the denominator

Corresponding Partial Fraction

(x - a)

Axa

(x – b)2

Axb+B(xb)2

(x - a) (x – b)

A(xa)+B(xb)

(x – c)3

Axc+B(xc)2+C(xc)3

(x – a) (x2 – a)

A(xa)+Bx+C(x2a)

(ax2 + bx + c)

Ax+B(ax2+bx+c)

Calculation:

Here we have to find the value of dxex1

Let ex = t and by differentiating ex = t with respect to x we get

⇒ ex dx = dt or dx = dt/ex = dt/t

dxex1=dtt(t1)

Let 1t(t1)=At+Bt1

⇒ 1 = A (t - 1) + B t ---------(1)

By putting t = 0 on both the sides of (1) we get A = - 1

By putting t = 1 on both the sides of (1) we get B = 1

1t(t1)=1t+1t1

dtt(t1)=dtt+dtt1

As we know that dxx=log|x|+C  where C is a constant

 dtt(t1)=log|t|+log|t1|+C

=log|t1t|+C

By substituting  ex = t in the above equation we get

dxex1=log|ex1ex|+C

The value of x2x23x+2dx will be ___________, where c is an arbitrary constant.

  1. x2 + e2x + 2 log x + c
  2. x - log |x - 1| + 4 log |x - 2| + c
  3. x + ex + log |x + 1| + c
  4. 1 + x2 log |x + 1| - ex + c

Answer (Detailed Solution Below)

Option 2 : x - log |x - 1| + 4 log |x - 2| + c

Integration using Partial Fractions Question 13 Detailed Solution

Download Solution PDF

Concept:

∫ 1 dx = x + constant

1xdx=log x+constant

Calculation:

Given:

Let, I=x2x23x+2dx

I=(1+3x2x23x+2)dx

I=1dx+3x+2x23x2dx.....(i)

3x2x23x+2=3x2(x2)(x1)=A(x2)+B(x1) ....(ii)

(3x - 2) = A (x - 1) + B (x - 2)

for x = 1

(3 (1) - 2) = B (1 - 2)

B = -1

for x = 2

(3 (2) - 2) = A (2 - 1)

A = 4

from equation (ii)

3x2x23x+2=4(x2)1(x1)

Now from equation (i)

I=1dx+4(x2)dx1(x1)dx

x - log |x - 1| + 4 log |x - 2| + c

where c is an arbitrary constant.

Evaluate: dxx{6(logx)2+7logx+2}

  1. log|2logx13logx+2|+C
  2. log|2logx+13logx2|+C
  3. log|2logx+13logx+2|+C
  4. log|2logx13logx2|+C

Answer (Detailed Solution Below)

Option 3 : log|2logx+13logx+2|+C

Integration using Partial Fractions Question 14 Detailed Solution

Download Solution PDF

Concept:

Partial Fraction:

Factors in the denominator

Corresponding Partial Fraction

(x - a)

Axa

(x – b)2

Axb+B(xb)2

(x - a) (x – b)

A(xa)+B(xb)

(x – c)3

Axc+B(xc)2+C(xc)3

(x – a) (x2 – a)

A(xa)+Bx+C(x2a)

(ax2 + bx + c)

Ax+B(ax2+bx+c)

 

Calculation:

Here we have to find the value of dxx{6(logx)2+7logx+2}

Let log x  = t and dx/x = dt

dxx{6(logx)2+7logx+2}=dt(6t2+7t+2)

dt(6t2+7t+2)=dt(2t+1)(3t+2)

1(2t+1)(3t+2)=A2t+1+B3t+2

⇒ 1 = A (3t + 2) + B (2t + 1) --------(1)

By putting t = - 1/2 on both the sides of (1) we get A = 2

By putting t = - 2/3 on both the sides of (1) we get B = - 3

1(2t+1)(3t+2)=22t+133t+2

dt(2t+1)(3t+2)=22t+1dt3dt3t+2

As we know  that dxx=log|x|+C  where C is a constant

dt(2t+1)(3t+2)=log|2t+1|log|3t+2|+C

=log|2t+13t+2|+C

By substituting log x  = t in the above equation we get

dxx{6(logx)2+7logx+2}=log|2logx+13logx+2|+C

2x+3x3+x22xdx=?

  1. 53log|x1|+32log|x|+16log|x+2|+c
  2. 53log|x1|32log|x|16log|x+2|+c
  3. 53log|x1|+32log|x|16log|x+2|+c
  4. 53log|x1|32log|x|+16log|x2|+c

Answer (Detailed Solution Below)

Option 2 : 53log|x1|32log|x|16log|x+2|+c

Integration using Partial Fractions Question 15 Detailed Solution

Download Solution PDF

Given:

2x+3x3+x22xdx

Concept:

Use concept of partial fractions

f(x)g(x)h(x)=Ag(x)+Bh(x)

And use formula of integration

1x dx=log|x|+c

Calculation:

2x+3x3+x22xdx

=2x+3x(x1)(x+2)dx

Use concept of partial fractions

2x+3x(x1)(x+2)=Ax+Bx1+Cx+2

Now, Cross multiply by denominators 

2x+3=A(x2+x2)+B(x2+2x)+C(x2x)

Compare the coefficients on both the sides.

A+B+C=0 .........(1)

A+2BC=2 ...........(2) and

2A=3

A=32

On adding equation (1) and (2)

2A+3B=2

Put value of A then

2×32+3B=2

B=53

Now put the value of A and B in equation (1) then we get

C=16

Now put all these values in integral then 

2x+3x3+x22xdx

=32.1x dx+53.1x1 dx+16.1x+2 dx

=32log|x|+53log|x1|16log|x+2|+c

=53log|x1|32log|x|16log|x+2|+c

Hence the option (2) is correct.

Get Free Access Now
Hot Links: teen patti master app teen patti gold new version teen patti master golden india