\(\rm \int {5x\over x^2+3x-4}dx\) = 

  1. ln (x - 1) + 4 ln (x + 4) + c
  2. ln (x - 1) - ln (x + 4) + c
  3. ln (x + 1) - 4 ln (x - 4) + c
  4. 4 ln (x + 1) - ln (x - 4) + c

Answer (Detailed Solution Below)

Option 1 : ln (x - 1) + 4 ln (x + 4) + c
Free
NDA 01/2025: English Subject Test
5.6 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

Concept:

Integral property:

  • ∫ xn dx = \(\rm x^{n+1}\over n+1\)+ C ; n ≠ -1
  • \(\rm∫ {1\over x} dx = \ln x\) + C
  • ∫ edx = ex+ C
  • ∫ adx = (ax/ln a) + C ; a > 0,  a ≠ 1
  • ∫ sin x dx = - cos x + C
  • ∫ cos x dx = sin x + C

 

Calculation:

I = \(\rm \int {5x\over x^2+3x-4}dx\)

I = \(\rm \int {5x\over (x-1)(x+4)}dx\)

I = \(\rm \int {(x+4)+(4x-4)\over (x-1)(x+4)}dx\)

I = \(\rm \int{1\over x-1}dx+\int{4\over x+4} dx\)

I = ln (x - 1) + 4 ln (x + 4) + c

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti master gold teen patti master downloadable content teen patti master update