Integration using Substitution MCQ Quiz - Objective Question with Answer for Integration using Substitution - Download Free PDF

Last updated on Apr 8, 2025

Latest Integration using Substitution MCQ Objective Questions

Integration using Substitution Question 1:

The integral I=tanxsinxcosxdx is equal to

(Where c in constant of integration) 

  1. log(tanx2)+c
  2. log (sin x) + c
  3. 2tanx+c
  4. -tan-1(cos x) + c
  5. log (tan x) + c

Answer (Detailed Solution Below)

Option 3 : 2tanx+c

Integration using Substitution Question 1 Detailed Solution

Explanation:

I=tanxsinxcosxdx

   = tanxtanxcos2xdx

  = tanxtanxsec2xdx

  = 1tanxsec2xdx

Let tan x = t2 ⇒ sec2x dx = 2tdt

So, I = 2ttdt

        = 2t + c

      = 2tanx+c

Option (3) is true.

Integration using Substitution Question 2:

Evaluate the following: ex(x+1)cos2(xex)dx 

  1. cos(xex) + c
  2. tan(xex​) + c
  3. sec(xex​) tan(xex) + c
  4. -cot(xex​) + c
  5. xex

Answer (Detailed Solution Below)

Option 2 : tan(xex​) + c

Integration using Substitution Question 2 Detailed Solution

Concept Used:

d(u × v) = u × dv + v × du

Calculation:

ex(x+1)cos2(xex)dx

Let xex = t 

Differential with respect to t

(xex + ex) dx = dt 

e(x + 1) dx = dt 

Now, ∫(1/cos2t) dt

⇒ ∫sec2t dt 

⇒ tant + c

∴​ ex(x+1)cos2(xex)dx = tan(xex) + c

Integration using Substitution Question 3:

Evaluate secxcos2xdx

  1. cos-1 (tan x) + c
  2. sin-1 (tan x) + c
  3. sec-1 (tan x) + c
  4. -sec-1 (tan x) + c
  5. -sec-1 cos-1 (tan x)

Answer (Detailed Solution Below)

Option 2 : sin-1 (tan x) + c

Integration using Substitution Question 3 Detailed Solution

Formula Used:

cos2x = cos2x - sin2x

tanx = sinx/cosx

11x2dx = sin-1x + c

Calculation:

Let,

I = secxcos2xdx

⇒ I =  secxcos2xsin2xdx

⇒ I = secxcosx1tan2xdx

⇒ I = sec2x1tan2xdx

Let tanx = t 

Differential with respect to t

⇒ I = (sec2x) dx = dt

⇒ I = 11t2dt

⇒ sin-1t + c

∴ sin-1(tanx) + c

Integration using Substitution Question 4:

dx1+sinx  equals

  1. tan x + sec x + c
  2. tan x - sec x + c
  3. secx - cosec2 x + c
  4. sec x - sec x tan x + c
  5. tan x

Answer (Detailed Solution Below)

Option 2 : tan x - sec x + c

Integration using Substitution Question 4 Detailed Solution

Solution

⇒ dx1+sinx

Dividing and multiplying the term by its conjugate.

 dx1+sinx × 1sinx1+sinxdx

⇒ 1sinx1sin2x  ...(1 - sin2x = cos2x)

⇒ 1sinxcos2x = 1cos2xsinxcos2x 

Since, (1/cos2x = sec2x and sin/cos2x = tan x × sec x) 

∫(sec2x - tan x sec x) dx

∫sec2x dx - ∫tan x sec x dx

⇒ tan x - sec x + c

The correct option is 2.

Integration using Substitution Question 5:

sinx+cosxsin2x dx equals :

  1. cosec−1(sin x + cos x) + C
  2. cosec−1(sin x − cos x) + C
  3. sin−1(sin x − cos x) + C
  4. sin−1(sinxcosx) + C
  5. sinxcosx

Answer (Detailed Solution Below)

Option 3 : sin−1(sin x − cos x) + C

Integration using Substitution Question 5 Detailed Solution

Formula Used:

dx1x2=sin1x+C

2 sin x cos x =sin 2x

Calculation:

Let I=sinx+cosxsin2xdx . . .(1)

Now, Put sin x - cos x = t

⇒​ ( sin x + cos x ) dx = dt

and (sin x - cos x)2 = t2

⇒ 1 - 2 sin x cos x =  t2

⇒ 1 - sin 2x =  t2

⇒ 1 - t =  sin 2x

Substituting all the values in (1)

I=dt1t2

I=sin1t+C

I=sin1(sinxcosx)+C

Top Integration using Substitution MCQ Objective Questions

11625x2dx is equal to ?

  1.  sin1(5x4) + c
  2.  15sin1(5x4) + c
  3.  15sin1(x4) + c
  4.  15sin1(4x5) + c

Answer (Detailed Solution Below)

Option 2 :  15sin1(5x4) + c

Integration using Substitution Question 6 Detailed Solution

Download Solution PDF

Concept:

1a2x2dx=sin1(xa)+c

Calculation:

I = 11625x2dx

116(5x)2dx

Let 5x = t

Differentiating with respect to x, we get

⇒ 5dx = dt

⇒ dx = dt5

Now,

I = 15142t2dt

15sin1(t4) + c

15sin1(5x4) + c

2x+3dx is equal to?

  1. (2x+3)1/23+c
  2. (2x+3)3/22+c
  3. (2x+3)3/23+c
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : (2x+3)3/23+c

Integration using Substitution Question 7 Detailed Solution

Download Solution PDF

Concept:

xndx=xn+1n+1+c

 

Calculation:

I = 2x+3dx

Let 2x + 3 = t2

Differenating with respect to x, we get

⇒ 2dx = 2tdt

⇒ dx = tdt

Now,

I = t2×tdt

t2dt

t33+c

∵ 2x + 3 = t2

⇒  (2x + 3)1/2 = t

⇒ (2x + 3)3/2 = t3

⇒ I = (2x+3)3/23+c

sin5xdx=

  1. cos5x5+c
  2. cos5x5+c
  3. 5cos 5x + c
  4. cos4x5+c

Answer (Detailed Solution Below)

Option 2 : cos5x5+c

Integration using Substitution Question 8 Detailed Solution

Download Solution PDF

Concept:

sinxdx=cosx+c

Calculation:

I = sin5xdx

Let 5x = t

Differentiating with respect to x, we get

⇒ 5dx = dt

⇒ dx = dt5

Now,

I = 15sintdt

15(cost)+c

cos5x5+c

What is the integral of f(x) = 1 + x2 + x4 with respect to x2?

  1. x+x33+x55+C
  2. x33+x55+C
  3. x2+x44+x66+C
  4. x2+x42+x63+C

Answer (Detailed Solution Below)

Option 4 : x2+x42+x63+C

Integration using Substitution Question 9 Detailed Solution

Download Solution PDF

Concept: 

xn dx=xn+1n+1+C

f(x) dx2 = (1+x2+x4) d(x2)      ....(i)

Calculation:

Let, x2 = u

From equation (i)

f(x) dx2 = (1+u+u2) du

⇒ u + u22 + u33+ C

Now putting the value of u,

​⇒ f(x)dx2 = x2 +​ x42 + x63 + C

∴ The required integral is x2 +​ x42 + x63 + C.

4x3dx is equal to?

  1. (4x+3)3/26+c
  2. (4x3)3/23+c
  3. (4x3)3/26+c
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : (4x3)3/26+c

Integration using Substitution Question 10 Detailed Solution

Download Solution PDF

Concept:

xndx=xn+1n+1+c

Calculation:

I = 4x3dx

Let 4x - 3 = t2

Differenating with respect to x, we get

⇒ 4dx = 2tdt

⇒ dx = t2dt

Now,

I = t2×t2dt

12t2dt

t36+c

(4x3)3/26+c

x1+x2dx=

  1. log(1+x2)+c
  2. log(1+x2)+c
  3. 2log(1+x2)+c
  4. None of these

Answer (Detailed Solution Below)

Option 2 : log(1+x2)+c

Integration using Substitution Question 11 Detailed Solution

Download Solution PDF

Concept:

Integral property:

  • ∫ xn dx = xn+1n+1+ C ; n ≠ -1
  • 1xdx=lnx + C
 
 

Calculation:

Let I = x1+x2dx

I = 122x1+x2dx

Let 1 + x2 = t

⇒ 2x dx = dt

I = 121tdt

12logt+c

12log(1+x2)+c

log(1+x2)+c              [∵ n log m = log mn]

If I1=ee2dxlogxand I2=12exxdx then

  1. I1 - I2 = 0
  2. I2 = 2I1
  3. I1 = 2I2
  4. I1 + I2 = 0

Answer (Detailed Solution Below)

Option 1 : I1 - I2 = 0

Integration using Substitution Question 12 Detailed Solution

Download Solution PDF

Calculation:

Given:I1=ee2dxlogx and I2=12exxdx

⇒ I1=ee2dxlogx put log x = z

Such that x = ez

Such that dx = ez dz 

when x = e, z = loge

x = e2, z = log e2 = 2 log e = z 

Such that I1 = 12(ez dz) / z =12(ex/z) dx = I2

Such that I1 = I2

I1 - I2 = 0 

Find the 2sin2x.log(tanx)

  1. log (sin x) + c
  2. log (cos x) + c
  3.  log (tan x) + c
  4.  log [log(tan x)] + c

Answer (Detailed Solution Below)

Option 4 :  log [log(tan x)] + c

Integration using Substitution Question 13 Detailed Solution

Download Solution PDF

Concept:

sin 2x = 2sin x cos x

∫(1/x)dx = log x + c

∫tanx dx = sec2x + c  

Calculation:

Let I = 2sin2x.log(tanx)         ....(1)

Take log (tan x) = t

1tanx(sec2x)dx=dt

⇒ cosxsinx.cos2xdx=dt

⇒ 1sinx.cosxdx=dt

⇒ dx = sin x.cos x dt

Putting the value of log (tan x) and dx in equation (i)

Now, I = 22sinx.cosx.tsinx.cosxdt

= ∫ 1tdt

= log t + c

= log [log(tan x) ]+ c

1ex+exdx=

  1. log |cot(ex) + tan(ex)|
  2. sin1(ex)+c
  3. log |1 + ex|
  4. tan1(ex)+c

Answer (Detailed Solution Below)

Option 4 : tan1(ex)+c

Integration using Substitution Question 14 Detailed Solution

Download Solution PDF

Concept:

11+x2dx=tan1x+c

x1=1x

 

Calculation:

Let, I = 1ex+exdx

1ex+1exdx                (∵ x1=1x)

exe2x+1dx

Now, let ex = t

⇒ ex dx = dt

∴ I = dtt2+1

tan1t+c             (∵ 11+x2dx=tan1x+c)

tan1(ex)+c         (∵ ex = t)

Hence, option (4) is correct. 

What is ∫ cot 2x dx is equal to?

  1. log|sin2x|+c
  2. 12log|sin2x|+c
  3. 12log|sec2x|+c
  4. log|sec2x|+c

Answer (Detailed Solution Below)

Option 2 : 12log|sin2x|+c

Integration using Substitution Question 15 Detailed Solution

Download Solution PDF

Concept:

1xdx=log|x|+c

 

Calculation:

I = ∫ cot 2x dx

=cos2xsin2xdx

Let sin 2x = t

Differentiating with respect to x, we get

⇒ 2 cos 2x dx = dt

⇒ cos 2x dx = dt2

I=121tdt

12log|t|+c

12log|sin2x|+c

Get Free Access Now
Hot Links: teen patti 100 bonus teen patti master 2024 teen patti joy teen patti gold apk download