Application of Determinants MCQ Quiz - Objective Question with Answer for Application of Determinants - Download Free PDF

Last updated on Apr 7, 2025

Latest Application of Determinants MCQ Objective Questions

Application of Determinants Question 1:

If the vertices of a triangle are (1, 2), (2, 5) and (4, 3) then the area of the triangle is :

  1. 3 Sq.units
  2. 4 Sq.units
  3. 6 Sq.units
  4. 8 Sq.units
  5. 9 Sq.units

Answer (Detailed Solution Below)

Option 2 : 4 Sq.units

Application of Determinants Question 1 Detailed Solution

Concept 

The area of a triangle given its three vertices is 

A=12|x1(y2y3)+x2(y3y1)+x3(y1y2)|   

Explanation:

A=12[|1(53)+2(32)+4(25)|]  

A=12|1×2+2×1+4×(3)|

A=12|2+212|  

A=12|8|  

A=12×8=4   

Hence Option(2) is the correct answer.

Application of Determinants Question 2:

If the vertices of a triangle are (1, 2), (2, 5) and (4, 3) then the area of the triangle is :

  1. 3 Sq.units
  2. 4 Sq.units
  3. 6 Sq.units
  4. 8 Sq.units
  5. 9 Sq.units

Answer (Detailed Solution Below)

Option 2 : 4 Sq.units

Application of Determinants Question 2 Detailed Solution

Concept 

The area of a triangle given its three vertices is 

A=12|x1(y2y3)+x2(y3y1)+x3(y1y2)|   

Explanation:

A=12[|1(53)+2(32)+4(25)|]  

A=12|1×2+2×1+4×(3)|

A=12|2+212|  

A=12|8|  

A=12×8=4   

Hence Option(2) is the correct answer.

Application of Determinants Question 3:

Consider a system equation

2x+yz=0,

4xpy+4z=4 and

xy+z=q

where p,qI and p,q[1,10], then identify the correct statement(s).

  List-I List-II
(I) Number of ordered pairs (p,q) for which system of equation has unique solution is (P) 1
(II) Number of ordered pairs (p,q) for which system of equation has no solution is (Q) 9
(III) Number of ordered pairs (p,q) for which system of equation has infinite solution is (R) 91
(IV) Number of ordered pairs (p,q) for which system of equation has atleast one solution is (S) 90

  1. I → Q, II → S, III → P, IV → R

  2. I → S, II → Q, III → P, IV → R

  3. I → P, II → R, III → S, IV → R

  4. I → Q, II → P, III → S, IV → P

Answer (Detailed Solution Below)

Option 2 :

I → S, II → Q, III → P, IV → R

Application of Determinants Question 3 Detailed Solution

Calculation:

Given:

System of linear equations:

2x+yz=0

4xpy+4z=4

xy+z=q

p,qI and p,q[1,10]

The coefficient matrix A is:

A=[2111p41111]

The augmented matrix [A|B] is:

[A|B]=[21101p411111q]

Calculate the determinant of A, |A|:

|A|=2(p4+1)1(11)1(1+p4)

|A|=p2+2+0+1p4

|A|=33p4

⇒ For unique solution, |A|0:

33p40

33p4

p4

For no solution or infinite solutions, |A|=0, so p=4.

⇒ If p=4, the system becomes:

2x+yz=0

xy+z=1

xy+z=q

⇒ From the second and third equations, for a solution to exist, 1=q.

⇒ If p=4 and q=1, infinite solutions exist.

⇒ If p=4 and q1, no solution exists.

(I) Unique solution: p4. p can take 9 values (1 to 10 except 4). q can take 10 values. Total pairs: 9 × 10 = 90.

(II) No solution: p=4 and q1. 9 values for q. 1 pair for p. Total pairs: 1 × 9 = 9.

(III) Infinite solutions: p=4 and q=1. 1 pair only.

(IV) At least one solution: Total pairs - No solution pairs = 100 - 9 = 91.

∴ (I) - (S), (II) - (Q), (III) - (P), (IV) - (R)

Application of Determinants Question 4:

If the points (5, 2, 4), (6, -1, 2) and (8, -7, k) are collinear, then k =

  1. -2
  2. -1
  3. 2
  4. 3
  5. 4

Answer (Detailed Solution Below)

Option 1 : -2

Application of Determinants Question 4 Detailed Solution

Given:

Points are (5, 2, 4), (6, -1, 2) & (8, -7, k)

Concept used:

Area of the triangle formed by using these points = 0

12 ×image (5)= 0

Calculation:

⇒ 5(- k + 14) - 2(6k - 16) + 4(- 42 + 8) = 0

⇒ - 5k + 70 - 12k + 32 + 4(- 34) = 0

⇒ -17k + 102 - 136 = 0

⇒ -17k - 34 = 0

⇒ -17k = 34

⇒ k = -2

Hence the correct answer is "-2".

Application of Determinants Question 5:

Let α, β (α ≠ β) be the values of m, for which the equations x + y + z = 1; x + 2y + 4z = m and x + 4y + 10z = m2 have infinitely many solutions. Then the value of  is n=110(nα+nβ) equal to : 

  1. 440
  2. 3080
  3. 3410
  4. 560

Answer (Detailed Solution Below)

Option 1 : 440

Application of Determinants Question 5 Detailed Solution

Δ=|1111241410|=1(2016)1(104)+1(42)

= 4 – 6 + 2 = 0

For infinite solutions

Δ= Δ= Δ= 0

m2 – 3x + 2 = 0

m = 1, 2 

α = 1, β = 2

n=110(nα+nβ)=n=110n1+n=110n2

=10(11)2+10(11)(21)6

= 55 + 385

= 440

Top Application of Determinants MCQ Objective Questions

The system of equations kx + y + z = 1, x + ky + z = k and x + y + kz = k2 has no solution if k equals

  1. 0
  2. 2
  3. - 1
  4. - 2

Answer (Detailed Solution Below)

Option 4 : - 2

Application of Determinants Question 6 Detailed Solution

Download Solution PDF

Concept

Let the system of equations be,

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

[a1b1c1a2b2c2a3b3c3][xyz]=[d1d2d3]

⇒ AX = B

⇒ X = A-1 B = adj(A)det(A)B

⇒ If det (A) ≠ 0, the system is consistent having unique solution.

⇒ If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.

⇒ If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)

Calculation:

Given: 

kx + y + z = 1, x + ky + z = k and x + y + kz = k2

A=[k111k111k],B=[xyz]andC=[1kk2]

⇒ For the given equations to have no solution, |A| = 0

|k111k111k|=0

⇒ k(k2 – 1) - 1(k – 1) + 1(1 – k) = 0

⇒ k3 – k – k + 1 + 1 – k = 0

⇒ k3 -3k +2 = 0

⇒ (k – 1) (k – 1) (k + 2) = 0

⇒ k = 1, -2

If we put k = 1 in the above given equations, then all the equations will become the same.

Hence, the given equations have no solution if k = - 2. 

If the area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 square units, then what is the value of k?

  1. 3
  2. 6
  3. 9
  4. 12

Answer (Detailed Solution Below)

Option 1 : 3

Application of Determinants Question 7 Detailed Solution

Download Solution PDF

Concept:

Area of a triangle with vertices (x1, y1) , (x2, y2), (x3, y3) is given by

​Area = 12|x1y11x2y21x3y31|

Calculations:

Given that, vertices of triangle are (-3, 0), (3, 0) and (0, k)

By using the above formula,

​⇒ Area = 12|3013010k1|

⇒ Area = 12[-3(0 - k) - 0 + 1(3k)]

⇒ Area = 3k

According to the question, area of triangle is 9 square unit,

⇒ 3k = 9

⇒ k = 3

∴ Required value of k is 3 unit.

An equilateral triangle has each side equal to a. If the co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant |x1y11 x2y21 x3y31| equals:

  1. None of these
  2. 4a2
  3. 3a4
  4. 3a44

Answer (Detailed Solution Below)

Option 4 : 3a44

Application of Determinants Question 8 Detailed Solution

Download Solution PDF

Concept:

Area of equilateral triangle = 34×a2

Calculation:

Given: The co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant |x1y11 x2y21 x3y31|

⇒ (△ ABC ) = 12 |x1y11 x2y21 x3y31| = ( 34) ×a2

On squaring both side, 

14  |x1y11 x2y21 x3y31|2 = 3a416

⇒ |x1y11 x2y21 x3y31|2 = 3a44

If A is a 2 × 2 matrix and |A| = 5, what is |5A| ? (| | denotes determinant)

  1. 5
  2. 25
  3. 125
  4. 625

Answer (Detailed Solution Below)

Option 3 : 125

Application of Determinants Question 9 Detailed Solution

Download Solution PDF

Concept:

Properties of determinants:

For a n×n matrix A, det(kA) = kn det(A).

Calculation:

Given:

|A| = 5

k = 5

From the properties of the determinants, we know that |KA| = Kn |A|, where n is the order of the determinant.

Here, n = 2, therefore, the answer is K2 |A|.

|5A| = 52|A|

|5A| = 5× 5 = 125

If (x1,y1),(x2,y2) and (x3,y3) are the vertices of a triangle whose area is ‘k’ square units, then |x1y14 x2y24 x3y34|2 is

  1. 32 k2
  2. 16 k2
  3. 64 k2
  4. 48 k2

Answer (Detailed Solution Below)

Option 3 : 64 k2

Application of Determinants Question 10 Detailed Solution

Download Solution PDF

Concept:

If (x1,y1),(x2,y2) and (x3,y3) are the vertices of a triangle then, 

Area = 12|x1y11 x2y21 x3y31|

Properties of Determinants

|x1y1kx x2y2ky x3y3kz|=k|x1y1x x2y2y x3y3z|

 

Calculations:

If (x1,y1),(x2,y2) and (x3,y3) are the vertices of a triangle then,

Area = 12|x1y11 x2y21 x3y31|

Given: the area is ‘k’ square units

⇒ k = 12|x1y11 x2y21 x3y31|

⇒ |x1y11 x2y21 x3y31|=2k

Now,  |x1y14 x2y24 x3y34|2

|x1y14 x2y24 x3y34||x1y14 x2y24 x3y34|

4|x1y11 x2y21 x3y31|.4|x1y11 x2y21 x3y31|

= 16.(2k)(2k)

= 64k2

Find the area of triangle with vertices at points A (1, 1) ,B ( 6, 0) and C ( 3, 2).

  1. 72
  2. 7
  3. 112
  4. 132

Answer (Detailed Solution Below)

Option 1 : 72

Application of Determinants Question 11 Detailed Solution

Download Solution PDF

Concept:

If (x1,y1),(x2,y2) and (x3,y3) are the vertices of a triangle then, 

Area = 12|x1y11 x2y21 x3y31|

Note: Area is always a positive quantity, therefore we always take the absolute value of the determinant for the area

Calculation:

Given vertices are A (1, 1) ,B ( 6, 0) and C ( 3, 2).

We know that area of triangle ABC is given by, 

Δ = 12|x1y11 x2y21 x3y31|

⇒ Δ = 12|111601321| 

⇒ Δ = 12[1(02)1(63)+1(120)] 

 Δ =  72  

The correct option is 1.

The area of triangle with vertices (K, 0), (4, 0), (0, 2) is 4 square units, then value of K is

  1. 8
  2. 0 or 8
  3. 0
  4. 0 or -8

Answer (Detailed Solution Below)

Option 2 : 0 or 8

Application of Determinants Question 12 Detailed Solution

Download Solution PDF

Concept:

The area of a triangle whose vertices are (x1, y1), (x2, y2) and (x3, y3), is given by the expression

Area=12|x1x21y1y21z1z21|  

Calculation:

Given, Area of triangle, A = 4 sq. unit and vertices (K, 0), (4, 0), (0, 2) 

since the area is always Positive But the determinant can be both positive and negative.  

∴ Δ = ± 4 . 

⇒ ± 4 = =12|k01401021|  

⇒ ± 4  =12[k(02)0(40)+1(80)] 

⇒ ± 8 = -2k + 8 

So, 8 = -2k + 8 or  -8 = -2k +8 

k = 0 or  8  .

The correct option is 2.

 The points (5, -2), (8, -3) and (a, -12) are collinear if the value of a is 

  1. 31
  2. 32
  3. 34
  4. 35

Answer (Detailed Solution Below)

Option 4 : 35

Application of Determinants Question 13 Detailed Solution

Download Solution PDF

Concept:

If the points A (x1, y1), B (x2, y2) and C (x3, y3) are collinear then area of ΔABC = 0.

Let A (x1, y1), B (x2, y2) and C (x3, y3) be the vertices of a Δ ABC, then area (A) of ΔABC is given as; 

A=12|x1y11x2y21x3y31|

Calculation

Here, we have to find the value of a for  which the points (5, -2), (8, -3) and (a, -12) are collinear

Let,

x1 = 5, y1 = -2,

x2 = 8, y2 = -3,

x3 = a, y3 = -12.

As we know that, if A (x1, y1), B (x2, y2) and C (x3, y3) are the vertices of a Δ ABC then area of Δ ABC =   A=12|x1y11x2y21x3y31|

A=12|521831a121|

2A = 5 (-3 + 12) + 2(8 - a) + 1(-96 + 3a)

2A = 45 + 16 - 2a - 96 + 3a

2A = a - 35  

⇒ A = (a - 35)/2

∵ The given points are collinear.

As we know that, if the points A (x1, y1), B (x2, y2) and C (x3, y3) are collinear then area of ΔABC = 0.

⇒ (a - 35)/2 = 0

⇒ a = 35

Hence, option D is the correct answer.

Alternate Method 

Concept:

Three or more points are collinear if the slope of any two pairs of points is the same.

The slope of a line passing through the distinct points (x1, y1) and (x2, y2) is y2y1x2x1

Calculation:

Let, A = (5, -2), B = (8, -3), C = (a, -12)

Now, the slope of AB = Slope of BC = Slope of AC      (∵ points are collinear)

 3(2)85=12(3)a813=9a8

⇒ a - 8= 27

⇒ a = 27 + 8 = 35

Hence, option (4) is correct.

Consider the determinant

Δ = |a11a12a13a21a22a23a31a32a33|

If a13 = yz, a23 = zx, a33 = xy and the minors of a13, a23, a33 are respectively (z − y), (z − x), (y − x) then what is the value of Δ ?

  1. (z − y) (z − x) (y − x)
  2. (x − y) (y − z) (x − z)
  3. (x − y) (z − x) (y − z) (x + y + z)
  4. (xy + yz + zx) (x + y + z)

Answer (Detailed Solution Below)

Option 1 : (z − y) (z − x) (y − x)

Application of Determinants Question 14 Detailed Solution

Download Solution PDF

Explanation:

Given:

Δ = |a11a12a13a21a22a23a31a32a33|

 a13 = yz, a23 = zx, a33 = xy and M13 = (z − y), M23 = (z − x), M33 = (y − x)

Expanding the determinant along Column 3,

⇒ Δ = a13 (a21a32 - a22a31) - a23 (a11a32 - a12a31) + a33 (a11a2 - a12a1)

⇒ Δ = a13M13 - a23M23 + a33M33

where Mij denotes the minor of aij element.

⇒ Δ = yz(z - y) - zx(z - x) + xy(y - x)

⇒ Δ = yz(z - y) - z2x + zx2 + xy2 - x2y

⇒ Δ = yz(z - y) + (xy2 - z2x) + (zx2 - x2y)

⇒ Δ = yz(z - y) + x(y2 - z2) + x2(z - y)

⇒ Δ = (z - y)[yz - x(y + z) + x2]

⇒ Δ = (z - y)[yz - xy - xz + x2]

⇒ Δ = (z - y)[y(z - x) - x(z - x)]

⇒ Δ = (z - y)[(z - x)(y - x)]

∴ The correct answer is option (1).

For what values of k is the system of equations 2k2x + 3y - 1 = 0, 7x - 2y + 3 = 0, 6kx + y + 1 = 0 consistent?

  1. 3±1110
  2. 21±16110
  3. 3±710
  4. 4±1110

Answer (Detailed Solution Below)

Option 2 : 21±16110

Application of Determinants Question 15 Detailed Solution

Download Solution PDF

Concept:

Consider three linear eqaution in two variable:

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

a3x + b3y + c3 = 0

Condition for the consistency of three simultaneous linear equations in 2 variables:

​​​​|a1b1c1a2b2c2a3b3c3|=0

Formula for Quadratic equation:

ax2 + bx + c = 0

x = b±b24ac2a

Calculation:

2k2x + 3y - 1 = 0      ....(1)

7x - 2y + 3 = 0      ....(2)

6kx + y + 1 = 0      ....(3)

For consistency of given simultaneous equation,

|2k2317236k11|=0

⇒ 2k2(-2- 3) - 3(7 - 18k) - 1(7 + 12k) = 0

⇒ -10k2 - 21 + 54k - 7 - 12k = 0

⇒ -10k2 + 42k - 28 =  0

5k2 - 21k + 14 =  0

By using the formula,

x=b±b24ac2a

k=(21)±(21)24(5)(14)2×5

k=21±16110

Get Free Access Now
Hot Links: teen patti 50 bonus teen patti app teen patti download teen patti sequence teen patti winner