Application of Determinants MCQ Quiz in मल्याळम - Objective Question with Answer for Application of Determinants - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 18, 2025

നേടുക Application of Determinants ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Application of Determinants MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Application of Determinants MCQ Objective Questions

Top Application of Determinants MCQ Objective Questions

Application of Determinants Question 1:

If A = \(\begin{bmatrix} 8 & 7 & 0\\ 6& 5& 4\\ 3& 2& 1 \end{bmatrix}\), then find the value of |A-1|.

  1. -18
  2. 1/18
  3. -1/18
  4. 18

Answer (Detailed Solution Below)

Option 2 : 1/18

Application of Determinants Question 1 Detailed Solution

Concept:

Property of Determinant 

  • \(|A^{-1}|=\frac{1}{|A|}\)

Calculation:

A = \(\begin{bmatrix} 8 & 7 & 0\\ 6& 5& 4\\ 3& 2& 1 \end{bmatrix}\)

⇒ \(|A|=\begin{vmatrix} 8 & 7 &0 \\ 6& 5 &4 \\ 3 &2 & 1 \end{vmatrix}\)

⇒ |A| = 8(5 - 8) - 7(6 - 12) + 0(12 - 15)

⇒ |A| = -24 + 42 + 0 = 18

Therefore,  \(|A^{-1}|=\frac{1}{|A|} = \frac{1}{18}\) 

Hence, option B is correct.

Application of Determinants Question 2:

The points A(a , b), B(b , a) and C(2a - 2b , 3b - a) will always be -

  1. non-collinear
  2. collinear
  3. vertices of an equilateral triangle
  4. vertices of a right angle triangle

Answer (Detailed Solution Below)

Option 2 : collinear

Application of Determinants Question 2 Detailed Solution

Concept:

If the area of the triangle formed by the vertices is zero, then three points are collinear

Formula:

Area of triangle = \(|\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1\\x_3 & y_3 & 1 \end{vmatrix}|\)

Calculation:

Given:

The points A(a , b), B(b , a) and C(2a - 2b , 3b - a) 

Area = \(|\frac{1}{2}\begin{vmatrix} a & b & 1 \\ b & a & 1\\2a-2b & 3b-a & 1 \end{vmatrix}|\)

= 1/2[a(a × 1 - (3b - a) × 1) -b (b × 1 - (2a - 2b) × 1) +1(b × (3b - a) - (2a - 2b) × a)]

⇒ Area = 0 

Hence points are collinear.

Application of Determinants Question 3:

A square non-singular matrix A satisfies the equation x2 - 4x + 3 = 0, then A-1 is equal to

  1. (I - A)/3
  2. (4I + A)/3
  3. (4I - A)/3
  4. (3I - A)/4

Answer (Detailed Solution Below)

Option 3 : (4I - A)/3

Application of Determinants Question 3 Detailed Solution

Concept:

Some properties of inverse

  • A-1A = I where I is the identity matrix
  • A-1 I = A-1 where I is the identity matrix


Calculation:

∴ A satisfies the equation x2 - 4x + 3 = 0

⇒ A2 - 4A + 3I = 0

Multiply the above equation by A-1, we get 

⇒ A-1A2 - 4A-1A + 3A-1I = 0

⇒ A - 4I + 3A-1 = 0

⇒ 3A-1 = 4I - A

⇒ A-1 = (4I - A) / 3

Hence, option 3 is correct.

Application of Determinants Question 4:

If \(\begin{vmatrix}1&1&0\\\ \rm x^2+2x+2&1&0\\\ 2&1&1\end{vmatrix}=0\), then the value of x is

  1. -2
  2. 2
  3. 1
  4. -1

Answer (Detailed Solution Below)

Option 4 : -1

Application of Determinants Question 4 Detailed Solution

Concept:

The value of the determinant \(\begin{vmatrix}a&b&c\\\ \rm d&e&f\\\ g&h&i\end{vmatrix}\) can be obtained by expanding along any row or column.

Expanding along the third column, the value of the determinant is 

c(dh - eg) - f(ah - bg) + i(ae - bd)

Calculation:

Given, \(\begin{vmatrix}1&1&0\\\ \rm x^2+2x+2&1&0\\\ 2&1&1\end{vmatrix}=0\)

Expanding LHS along column 3,

⇒ 0(x2 + 2x + 2- 2) - 0(1 - 2) + 1(1 - (x2 + 2x + 2)) = 0

⇒ 0 + 0 - x2 - 2x - 1 = 0

⇒ x2 + 2x + 1 = 0

⇒ (x + 1)2 = 0 

∴  x = -1

Application of Determinants Question 5:

The system of linear equation kx + y + z = 1, x + ky + z = 1 and x + y + kz = 1 has a unique solution under which one of the following conditions?

  1. k ≠ 1 and k ≠ -2
  2. k ≠ 1 and k ≠ 2
  3. k ≠ -1 and k ≠ -2
  4. k ≠ -1 and k ≠ 2

Answer (Detailed Solution Below)

Option 1 : k ≠ 1 and k ≠ -2

Application of Determinants Question 5 Detailed Solution

Concept

Let the system of equations be,

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

\(\Rightarrow \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_1}}&{{{\rm{b}}_1}}&{{{\rm{c}}_1}}\\ {{{\rm{a}}_2}}&{{{\rm{b}}_2}}&{{{\rm{c}}_2}}\\ {{{\rm{a}}_3}}&{{{\rm{b}}_3}}&{{{\rm{c}}_3}} \end{array}} \right]{\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {{{\rm{d}}_1}}\\ {{{\rm{d}}_2}}\\ {{{\rm{d}}_3}} \end{array}} \right]\)

⇒ AX = B

⇒ X = A-1 B = \({\rm{\;}}\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}{\rm{\;B}}\)

⇒ If det (A) ≠ 0, system is consistent having unique solution.

Calculation:

Given system of linear equation are kx + y + z = 1, x + ky + z = 1 and x + y + kz = 1

Let A = \(\left[ {\begin{array}{*{20}{c}} {\rm{k}}&1&1\\ 1&{\rm{k}}&1\\ 1&1&{\rm{k}} \end{array}} \right]\)

det (A) = |A| = k (k2 – 1) – 1(k -1) + 1 (1 – k)

⇒ |A| = k3 – k – k + 1 + 1 – k = k3 – 3k + 2

For unique solution,

det (A) ≠ 0

⇒ k3 – 3k + 2 ≠ 0

⇒ (k – 1) (k2 + k - 2) ≠ 0

⇒ (k – 1) (k – 1) (k + 2) ≠ 0

∴ k ≠ 1 and k ≠ -2

Application of Determinants Question 6:

If A and B are square matrices of order 2 such that |A| = 2, |B| = 4 then |2 AB| is equal to - 

  1. 16
  2. 24
  3. 32
  4. 64

Answer (Detailed Solution Below)

Option 3 : 32

Application of Determinants Question 6 Detailed Solution

Concept:

Property of determinant of a matrix:

  • Let A be a matrix of order n × n then det(kA) = kdet(A)
  • If A and B are two square matrices then |AB| = |A||B|

 

Calculation:

Given: A and B are square matrices of order 2 such that |A| = 2, |B| = 4 

Here, we have to find the value of |2 AB|

As we know that, if A and B are two determinants of order n, then |AB| = |A||B|

⇒ |2 AB| = |2A||B|

As we know that, if A is a matrix of order n, then |kA| = kn |A|, where k ∈ R.

Here n = 2 So, |2A| = 22 ⋅ |A| = 4|A|

⇒ |2 AB| = |2A||B|

= 4|A||B|

= 4 × 2 × 4

= 32

Application of Determinants Question 7:

Find the possible value(s) of 't' if the area of the triangle formed by vertices (-2 , 0), (-2 , 8) and (t , 4) is 12 square units.

  1. t = ±5
  2. t = -5, 1
  3. t = 1, 5
  4. t = 0

Answer (Detailed Solution Below)

Option 2 : t = -5, 1

Application of Determinants Question 7 Detailed Solution

Concept:

Formula:

Area of triangle = \(|\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1\\x_3 & y_3 & 1 \end{vmatrix}|\)

Calculation:

Given:

The area of the triangle formed by vertices (-2 , 0), (-2 , 8) and (t , 4) is 12 square units.

Area = \(|\frac{1}{2}\begin{vmatrix} -2 & 0& 1 \\ -2 & 8 & 1\\t & 4 & 1 \end{vmatrix}|\)

⇒ |-2(8 × 1 - 4 × 1) -0(-2 × 1 - t × 1) + 1(-2 × 4 - t × 8)| = 12 × 2

⇒ |-16 - 8t| = 24

⇒ |- 2 - t| = 3

⇒ - 2 - t = 3 or  -2 - t = -3

⇒ t = -5, 1

So, the correct answer is option 2.

Application of Determinants Question 8:

Which of the following are correct in respect of the system of equation

x + y + z = 8,

x – y + 2z = 6 and

3x – y + 5z = k?

1. They have no solution if k = 15

2. They have infinitely many solutions, if k = 20

3. They have a unique solution if k = 25

Select the correct answer using the code given below:

  1. 1 and 2 only
  2. 2 and 3 only
  3. 1 and 3 only
  4. 1, 2 and 3

Answer (Detailed Solution Below)

Option 1 : 1 and 2 only

Application of Determinants Question 8 Detailed Solution

Concept

Let the system of equations be,

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

\({\rm{\;}} ⇒ \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_1}}&{{{\rm{b}}_1}}&{{{\rm{c}}_1}}\\ {{{\rm{a}}_2}}&{{{\rm{b}}_2}}&{{{\rm{c}}_2}}\\ {{{\rm{a}}_3}}&{{{\rm{b}}_3}}&{{{\rm{c}}_3}} \end{array}} \right]{\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {{{\rm{d}}_1}}\\ {{{\rm{d}}_2}}\\ {{{\rm{d}}_3}} \end{array}} \right]\)

⇒ AX = B

⇒ X = A-1 B = \(\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}{\rm{\;B}}\)

⇒ If det (A) ≠ 0, system is consistent having unique solution.

⇒ If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.

⇒ If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)

Calculation:

Given system of equation x + y + z = 8, x – y + 2z = 6 and 3x – y + 5z = k

\(⇒ \left[ {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&2\\ 3&{ - 1}&5 \end{array}} \right]{\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{k}} \end{array}} \right]\)

⇒ AX = B

Determinant of A = |A| = 1 (-5 + 2) – 1 (5 – 6) + 1 (-1 + 3) = -3 + 1 + 2 = 0

So we can say that equations have either an infinite solution or no solution.

A unique solution is not possible.

 ∴ Statement 3 is wrong.

We have adj A = \(\left[ {\begin{array}{*{20}{c}} -3&-6&3\\ 1&{2}&-1\\ 2&{ 4}&-2 \end{array}} \right]\)

If k = 15,

B = \(\left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{15}} \end{array}} \right]\)

Now (adj A). B will be 

\(\left[ {\begin{array}{*{20}{c}} -3&-6&3\\ 1&{2}&-1\\ 2&{ 4}&-2 \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{15}} \end{array}} \right] \ne 0 \)

⇒ no solution

If K = 20,

B = \(\left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{20}} \end{array}} \right]\)

Now (adj A). B will be 

\(\left[ {\begin{array}{*{20}{c}} -3&-6&3\\ 1&{2}&-1\\ 2&{ 4}&-2 \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{20}} \end{array}} \right] = 0 \)

⇒ infinitely many solutions

Hence Option 1 is correct.

Application of Determinants Question 9:

If the system of linear equations

x + y + z = 5

x + 2y + 2z = 6

x + 3y + λz = μ

(λ, μ ∈ R), has infinitely many solutions, then the value of λ + μ is:

  1. 12
  2. 9
  3. 7
  4. 10

Answer (Detailed Solution Below)

Option 4 : 10

Application of Determinants Question 9 Detailed Solution

The given system of linear equations:

x + y + z = 5;

x + 2y + 2z = 6;

and x + 3y + λz = μ have infinite solution.

∴ Δ = 0, Δx = Δy = Δz = 0

Now, forming determinant from the given equations,

\({\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} 1&1&1\\ 1&2&2\\ 1&3&{\rm{\lambda }} \end{array}} \right| = 0\)

⇒ 1(2λ – 6)-1(λ – 2)+1(3 – 2) = 0

⇒ 2λ – 6 – λ + 2 + 3 – 2 = 0

⇒ λ – 8 + 5 = 0

⇒ λ – 3 = 0

∴ λ = 3

Now, the determinant of y is:

\({\rm{\Delta y}} = \left| {\begin{array}{*{20}{c}} 1&5&1\\ 1&6&2\\ 1&{\rm{\mu }}&3 \end{array}} \right| = 0\)

R2 → R2 – R1

R3 → R3 – R1

\(\Rightarrow \left| {\begin{array}{*{20}{c}} 1&5&1\\ {1 - 1}&{6 - 5}&{2 - 1}\\ {1 - 1}&{{\rm{\mu }} - 5}&{3 - 1} \end{array}} \right| = 0\)

\(\Rightarrow \left| {\begin{array}{*{20}{c}} 1&5&1\\ 0&1&1\\ 0&{{\rm{\mu }} - 5}&2 \end{array}} \right| = 0\)

⇒ 1(2 – (μ – 5)) – 5(0 – 0) + 1(0 – 0) = 0

⇒ 1(2 – (μ – 5)) = 0

⇒ 2 – μ + 5 = 0

⇒ 7 – μ = 0

∴ μ = 7

Now,

∴ λ + μ = 3 + 7 = 10

Application of Determinants Question 10:

The area of the triangle (in unit2) whose vertices are A(4, 8),B(-6, 2) and C(5, 4) is: 

  1. 46
  2. 48
  3. 21
  4. 23

Answer (Detailed Solution Below)

Option 4 : 23

Application of Determinants Question 10 Detailed Solution

Given:

 vertices are A(4, 8),B(-6, 2) and C(5, 4)

Concept:

Area of triangle whose vertices are \(\rm (x_1,y_1),(x_2,y_2), and (x_3,y_3)\) is

\(\rm A = \frac{1}{2} |x_1(y_2 − y_3) + x_2(y_3 − y_1) + x_3(y_1 − y_2)|\)

Calculation:

vertices are A(4, 8),B(-6, 2) and C(5, 4)

Then the area is

\(\rm A = \frac{1}{2} |x_1(y_2 − y_3) + x_2(y_3 − y_1) + x_3(y_1 − y_2)|\)

\(\rm A=\frac{1}{2}|4(2-4)-6(4-8)+5(8-2)| \)

\(\rm A=\frac{1}{2}|-8+24+30|\)

\(\rm A=\frac{1}{2}\cdot46\)

\(\rm A=23 \ unit^2\)

Hence the option (4) is correct.

Get Free Access Now
Hot Links: teen patti tiger teen patti winner teen patti master list lotus teen patti