Application of Determinants MCQ Quiz in मल्याळम - Objective Question with Answer for Application of Determinants - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 18, 2025
Latest Application of Determinants MCQ Objective Questions
Top Application of Determinants MCQ Objective Questions
Application of Determinants Question 1:
If A = \(\begin{bmatrix} 8 & 7 & 0\\ 6& 5& 4\\ 3& 2& 1 \end{bmatrix}\), then find the value of |A-1|.
Answer (Detailed Solution Below)
Application of Determinants Question 1 Detailed Solution
Concept:
Property of Determinant
- \(|A^{-1}|=\frac{1}{|A|}\)
Calculation:
A = \(\begin{bmatrix} 8 & 7 & 0\\ 6& 5& 4\\ 3& 2& 1 \end{bmatrix}\)
⇒ \(|A|=\begin{vmatrix} 8 & 7 &0 \\ 6& 5 &4 \\ 3 &2 & 1 \end{vmatrix}\)
⇒ |A| = 8(5 - 8) - 7(6 - 12) + 0(12 - 15)
⇒ |A| = -24 + 42 + 0 = 18
Therefore, \(|A^{-1}|=\frac{1}{|A|} = \frac{1}{18}\)
Hence, option B is correct.
Application of Determinants Question 2:
The points A(a , b), B(b , a) and C(2a - 2b , 3b - a) will always be -
Answer (Detailed Solution Below)
Application of Determinants Question 2 Detailed Solution
Concept:
If the area of the triangle formed by the vertices is zero, then three points are collinear
Formula:
Area of triangle = \(|\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1\\x_3 & y_3 & 1 \end{vmatrix}|\)
Calculation:
Given:
The points A(a , b), B(b , a) and C(2a - 2b , 3b - a)
Area = \(|\frac{1}{2}\begin{vmatrix} a & b & 1 \\ b & a & 1\\2a-2b & 3b-a & 1 \end{vmatrix}|\)
= 1/2[a(a × 1 - (3b - a) × 1) -b (b × 1 - (2a - 2b) × 1) +1(b × (3b - a) - (2a - 2b) × a)]
⇒ Area = 0
Hence points are collinear.
Application of Determinants Question 3:
A square non-singular matrix A satisfies the equation x2 - 4x + 3 = 0, then A-1 is equal to
Answer (Detailed Solution Below)
Application of Determinants Question 3 Detailed Solution
Concept:
Some properties of inverse
- A-1A = I where I is the identity matrix
- A-1 I = A-1 where I is the identity matrix
Calculation:
∴ A satisfies the equation x2 - 4x + 3 = 0
⇒ A2 - 4A + 3I = 0
Multiply the above equation by A-1, we get
⇒ A-1A2 - 4A-1A + 3A-1I = 0
⇒ A - 4I + 3A-1 = 0
⇒ 3A-1 = 4I - A
⇒ A-1 = (4I - A) / 3
Hence, option 3 is correct.
Application of Determinants Question 4:
If \(\begin{vmatrix}1&1&0\\\ \rm x^2+2x+2&1&0\\\ 2&1&1\end{vmatrix}=0\), then the value of x is
Answer (Detailed Solution Below)
Application of Determinants Question 4 Detailed Solution
Concept:
The value of the determinant \(\begin{vmatrix}a&b&c\\\ \rm d&e&f\\\ g&h&i\end{vmatrix}\) can be obtained by expanding along any row or column.
Expanding along the third column, the value of the determinant is
c(dh - eg) - f(ah - bg) + i(ae - bd)
Calculation:
Given, \(\begin{vmatrix}1&1&0\\\ \rm x^2+2x+2&1&0\\\ 2&1&1\end{vmatrix}=0\)
Expanding LHS along column 3,
⇒ 0(x2 + 2x + 2- 2) - 0(1 - 2) + 1(1 - (x2 + 2x + 2)) = 0
⇒ 0 + 0 - x2 - 2x - 1 = 0
⇒ x2 + 2x + 1 = 0
⇒ (x + 1)2 = 0
∴ x = -1
Application of Determinants Question 5:
The system of linear equation kx + y + z = 1, x + ky + z = 1 and x + y + kz = 1 has a unique solution under which one of the following conditions?
Answer (Detailed Solution Below)
Application of Determinants Question 5 Detailed Solution
Concept
Let the system of equations be,
a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3
\(\Rightarrow \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_1}}&{{{\rm{b}}_1}}&{{{\rm{c}}_1}}\\ {{{\rm{a}}_2}}&{{{\rm{b}}_2}}&{{{\rm{c}}_2}}\\ {{{\rm{a}}_3}}&{{{\rm{b}}_3}}&{{{\rm{c}}_3}} \end{array}} \right]{\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {{{\rm{d}}_1}}\\ {{{\rm{d}}_2}}\\ {{{\rm{d}}_3}} \end{array}} \right]\)
⇒ AX = B
⇒ X = A-1 B = \({\rm{\;}}\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}{\rm{\;B}}\)
⇒ If det (A) ≠ 0, system is consistent having unique solution.
Calculation:
Given system of linear equation are kx + y + z = 1, x + ky + z = 1 and x + y + kz = 1
Let A = \(\left[ {\begin{array}{*{20}{c}} {\rm{k}}&1&1\\ 1&{\rm{k}}&1\\ 1&1&{\rm{k}} \end{array}} \right]\)
det (A) = |A| = k (k2 – 1) – 1(k -1) + 1 (1 – k)
⇒ |A| = k3 – k – k + 1 + 1 – k = k3 – 3k + 2
For unique solution,
det (A) ≠ 0
⇒ k3 – 3k + 2 ≠ 0
⇒ (k – 1) (k2 + k - 2) ≠ 0
⇒ (k – 1) (k – 1) (k + 2) ≠ 0
∴ k ≠ 1 and k ≠ -2
Application of Determinants Question 6:
If A and B are square matrices of order 2 such that |A| = 2, |B| = 4 then |2 AB| is equal to -
Answer (Detailed Solution Below)
Application of Determinants Question 6 Detailed Solution
Concept:
Property of determinant of a matrix:
- Let A be a matrix of order n × n then det(kA) = kn det(A)
-
If A and B are two square matrices then |AB| = |A||B|
Calculation:
Given: A and B are square matrices of order 2 such that |A| = 2, |B| = 4
Here, we have to find the value of |2 AB|
As we know that, if A and B are two determinants of order n, then |AB| = |A||B|
⇒ |2 AB| = |2A||B|
As we know that, if A is a matrix of order n, then |kA| = kn |A|, where k ∈ R.
Here n = 2 So, |2A| = 22 ⋅ |A| = 4|A|
⇒ |2 AB| = |2A||B|
= 4|A||B|
= 4 × 2 × 4
= 32
Application of Determinants Question 7:
Find the possible value(s) of 't' if the area of the triangle formed by vertices (-2 , 0), (-2 , 8) and (t , 4) is 12 square units.
Answer (Detailed Solution Below)
Application of Determinants Question 7 Detailed Solution
Concept:
Formula:
Area of triangle = \(|\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1\\x_3 & y_3 & 1 \end{vmatrix}|\)
Calculation:
Given:
The area of the triangle formed by vertices (-2 , 0), (-2 , 8) and (t , 4) is 12 square units.
Area = \(|\frac{1}{2}\begin{vmatrix} -2 & 0& 1 \\ -2 & 8 & 1\\t & 4 & 1 \end{vmatrix}|\)
⇒ |-2(8 × 1 - 4 × 1) -0(-2 × 1 - t × 1) + 1(-2 × 4 - t × 8)| = 12 × 2
⇒ |-16 - 8t| = 24
⇒ |- 2 - t| = 3
⇒ - 2 - t = 3 or -2 - t = -3
⇒ t = -5, 1
So, the correct answer is option 2.
Application of Determinants Question 8:
Which of the following are correct in respect of the system of equation
x + y + z = 8,
x – y + 2z = 6 and
3x – y + 5z = k?
1. They have no solution if k = 15
2. They have infinitely many solutions, if k = 20
3. They have a unique solution if k = 25
Select the correct answer using the code given below:Answer (Detailed Solution Below)
Application of Determinants Question 8 Detailed Solution
Concept
Let the system of equations be,
a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3
\({\rm{\;}} ⇒ \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_1}}&{{{\rm{b}}_1}}&{{{\rm{c}}_1}}\\ {{{\rm{a}}_2}}&{{{\rm{b}}_2}}&{{{\rm{c}}_2}}\\ {{{\rm{a}}_3}}&{{{\rm{b}}_3}}&{{{\rm{c}}_3}} \end{array}} \right]{\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {{{\rm{d}}_1}}\\ {{{\rm{d}}_2}}\\ {{{\rm{d}}_3}} \end{array}} \right]\)
⇒ AX = B
⇒ X = A-1 B = \(\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}{\rm{\;B}}\)
⇒ If det (A) ≠ 0, system is consistent having unique solution.
⇒ If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.
⇒ If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)
Calculation:
Given system of equation x + y + z = 8, x – y + 2z = 6 and 3x – y + 5z = k
\(⇒ \left[ {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&2\\ 3&{ - 1}&5 \end{array}} \right]{\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{k}} \end{array}} \right]\)
⇒ AX = B
Determinant of A = |A| = 1 (-5 + 2) – 1 (5 – 6) + 1 (-1 + 3) = -3 + 1 + 2 = 0
So we can say that equations have either an infinite solution or no solution.
A unique solution is not possible.
∴ Statement 3 is wrong.
We have adj A = \(\left[ {\begin{array}{*{20}{c}} -3&-6&3\\ 1&{2}&-1\\ 2&{ 4}&-2 \end{array}} \right]\)
If k = 15,
B = \(\left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{15}} \end{array}} \right]\)
Now (adj A). B will be
\(\left[ {\begin{array}{*{20}{c}} -3&-6&3\\ 1&{2}&-1\\ 2&{ 4}&-2 \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{15}} \end{array}} \right] \ne 0 \)
⇒ no solution
If K = 20,
B = \(\left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{20}} \end{array}} \right]\)
Now (adj A). B will be
\(\left[ {\begin{array}{*{20}{c}} -3&-6&3\\ 1&{2}&-1\\ 2&{ 4}&-2 \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} 8\\ 6\\ {\rm{20}} \end{array}} \right] = 0 \)
⇒ infinitely many solutions
Hence Option 1 is correct.
Application of Determinants Question 9:
If the system of linear equations
x + y + z = 5
x + 2y + 2z = 6
x + 3y + λz = μ
(λ, μ ∈ R), has infinitely many solutions, then the value of λ + μ is:Answer (Detailed Solution Below)
Application of Determinants Question 9 Detailed Solution
The given system of linear equations:
x + y + z = 5;
x + 2y + 2z = 6;
and x + 3y + λz = μ have infinite solution.
∴ Δ = 0, Δx = Δy = Δz = 0
Now, forming determinant from the given equations,
\({\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} 1&1&1\\ 1&2&2\\ 1&3&{\rm{\lambda }} \end{array}} \right| = 0\)
⇒ 1(2λ – 6)-1(λ – 2)+1(3 – 2) = 0
⇒ 2λ – 6 – λ + 2 + 3 – 2 = 0
⇒ λ – 8 + 5 = 0
⇒ λ – 3 = 0
∴ λ = 3
Now, the determinant of y is:
\({\rm{\Delta y}} = \left| {\begin{array}{*{20}{c}} 1&5&1\\ 1&6&2\\ 1&{\rm{\mu }}&3 \end{array}} \right| = 0\)
R2 → R2 – R1
R3 → R3 – R1
\(\Rightarrow \left| {\begin{array}{*{20}{c}} 1&5&1\\ {1 - 1}&{6 - 5}&{2 - 1}\\ {1 - 1}&{{\rm{\mu }} - 5}&{3 - 1} \end{array}} \right| = 0\)
\(\Rightarrow \left| {\begin{array}{*{20}{c}} 1&5&1\\ 0&1&1\\ 0&{{\rm{\mu }} - 5}&2 \end{array}} \right| = 0\)
⇒ 1(2 – (μ – 5)) – 5(0 – 0) + 1(0 – 0) = 0
⇒ 1(2 – (μ – 5)) = 0
⇒ 2 – μ + 5 = 0
⇒ 7 – μ = 0
∴ μ = 7
Now,
∴ λ + μ = 3 + 7 = 10Application of Determinants Question 10:
The area of the triangle (in unit2) whose vertices are A(4, 8),B(-6, 2) and C(5, 4) is:
Answer (Detailed Solution Below)
Application of Determinants Question 10 Detailed Solution
Given:
vertices are A(4, 8),B(-6, 2) and C(5, 4)
Concept:
Area of triangle whose vertices are \(\rm (x_1,y_1),(x_2,y_2), and (x_3,y_3)\) is
\(\rm A = \frac{1}{2} |x_1(y_2 − y_3) + x_2(y_3 − y_1) + x_3(y_1 − y_2)|\)
Calculation:
vertices are A(4, 8),B(-6, 2) and C(5, 4)
Then the area is
\(\rm A = \frac{1}{2} |x_1(y_2 − y_3) + x_2(y_3 − y_1) + x_3(y_1 − y_2)|\)
\(\rm A=\frac{1}{2}|4(2-4)-6(4-8)+5(8-2)| \)
\(\rm A=\frac{1}{2}|-8+24+30|\)
\(\rm A=\frac{1}{2}\cdot46\)
\(\rm A=23 \ unit^2\)
Hence the option (4) is correct.