Determinants MCQ Quiz - Objective Question with Answer for Determinants - Download Free PDF
Last updated on Jun 19, 2025
Latest Determinants MCQ Objective Questions
Determinants Question 1:
If M = \(\begin{vmatrix} -1 & 0 \\ 2 & 3 \end{vmatrix}, N = \begin{vmatrix} 0 & -2 \\ -2 & 3 \end{vmatrix}\) , then 2M +N is :
Answer (Detailed Solution Below)
Determinants Question 1 Detailed Solution
Given:
M = \(\begin{vmatrix} -1 & 0 \\ 2 & 3 \end{vmatrix} \)
N = \(\begin{vmatrix} 0 & -2 \\ -2 & 3 \end{vmatrix}\)
Calculation:
First, calculate 2M:
2M = \(\begin{vmatrix} -2 & 0 \\ 4 & 6 \end{vmatrix} \)
Now, calculate 2M + N :
2M + N = \(\begin{vmatrix} -2 & 0 \\ 4 & 6 \end{vmatrix} \) + \(\begin{vmatrix} 0 & -2 \\ -2 & 3 \end{vmatrix}\)
\(\begin{vmatrix} -2+0 & 0 +(-2)\\ 4+(-2) & 6+3 \end{vmatrix} \)
\(\begin{vmatrix} -2 & -2\\ 2 & 9 \end{vmatrix} \)
∴ Option 4 is the correct answer.
Determinants Question 2:
Consider the following in respect of a non-singular matrix M:
I.
II.
III.
How many of the above are correct?
Answer (Detailed Solution Below)
Determinants Question 2 Detailed Solution
Calculation:
Statement I
\( |M^2| = |M \times M| = |M| \cdot |M| = |M|^2 \)
⇒ Statement I is correct.
Statement II
For a non-singular matrix, \( M \times M^{-1} = I \), where \( I \) is the identity matrix.
\( |M| \cdot |M^{-1}| = |I| = 1 \)
⇒ Statement II is incorrect unless \( |M| = \pm 1 \).
Statement III
The determinant of a matrix is equal to the determinant of its transpose:
\( |M| = |M^T| \)
⇒ Statement III is correct.
Out of the three statements, two are correct: I and III.
Hence, the correct answer is Option 3.Determinants Question 3:
If ω is a non-real cube root of unity, then what is a root of the following equation?\( \begin{vmatrix} x+1 & \omega & \omega^2 \\ \omega & x+\omega^2 & 1 \\ \omega^2 & 1 & x+\omega \end{vmatrix} = 0 \)
Answer (Detailed Solution Below)
Determinants Question 3 Detailed Solution
Calculation:
Given,
Let ω be a non-real cube root of unity, so \( \omega^{3}=1 \) and \( 1+\omega+\omega^{2}=0 \).
Consider the determinant
\( \Delta(x)= \begin{vmatrix} x+1 & \omega & \omega^{2}\\ \omega & x+\omega^{2} & 1\\ \omega^{2} & 1 & x+\omega \end{vmatrix}=0. \)
Step 1 — Column operation: Replace the first column by \(C_{1}-C_{2}\):
\( \Delta(x)= \begin{vmatrix} x^{2}-1 & \,2\!k\!+\!1\, & 1\\ k-1 & k+2 & 1\\ 0 & 3 & 1 \end{vmatrix}. \)
Step 2 — Expansion along the third row:
\( \Delta(x)= -3\! \begin{vmatrix} k^{2}-1 & 1\\ k-1 & 1 \end{vmatrix} + \begin{vmatrix} k^{2}-1 & 2k+1\\ k-1 & k+2 \end{vmatrix}, \)
which simplifies to
\( \Delta(x)=x(x^{2}-1)-x\bigl(\omega+\omega^{2}\bigr) =x(x^{2}-1)+x =x^{3}. \)
Step 3 — Equate to zero:
\( \Delta(x)=0 \;\Longrightarrow\; x^{3}=0 \;\Longrightarrow\; x=0. \)
∴ The root of the equation is \( x = 0 \).
Hence, the correct answer is Option 1.
Determinants Question 4:
If , then what is the value of the following?
\(\begin{vmatrix} 1& cosC& cosB\\ cosC&1&cosA \\ cosB&cosA&1 \end{vmatrix} \)
Answer (Detailed Solution Below)
Determinants Question 4 Detailed Solution
Concept:
When A2 + B2 + C2 = 0, it implies A = B = C = 0 (since the squares of real numbers are non-negative).
Substitute the values of A, B, and C for determinant calculation into the matrix
Calculation:
\(\begin{vmatrix} 1& cos0& cos0\\ cos0&1&cos0 \\ cos0&cos0&1 \end{vmatrix} \)
Since, Cos0 =1
Thus Matrix becomes
\(\begin{vmatrix} 1& 1& 1\\ 1&1&1 \\ 1&1&1 \end{vmatrix} \)
Now determinant = 1[(1×1 - 1×1)] - 1[(1×1 - 1×1)] + 1[(1×1 - 1×1)]
= = 1(0) - 1(0) + 1(0) = 0
∴ The value of the determinant is 0.
Hence, the correct answer is Option 2.
Determinants Question 5:
If \( \begin{vmatrix} 2 & 3+i & -1 \\ 3-i & 0 & i \\ -1 & -i & 1 \end{vmatrix} = A + iB \)
where i= \(\sqrt{-1}\) , then what is A+B equal to?
Answer (Detailed Solution Below)
Determinants Question 5 Detailed Solution
Calculation:
Determinant Δ = \(a(ei−fh)−b(di−fg)+c(dh−eg)\)
Now, For our matrix,
\(a=2,b=3+i,c=−1,d=3−i,e=0,f=i,g=−1,h=−i,i=1\)
calculate the subdeterminants
⇒ \( ei−fh=(0)(1)−(i)(−i)=0−(−1)=1\)
⇒ \(di−fg=(3−i)(1)−(i)(−1)=3−i+i=3\)
⇒ \(dh−eg=(3−i)(−i)−(0)(−1)=−3i+i 2=−3i−1=−1−3i\)
⇒ Δ = \(2(1)−(3+i)(3)+(−1)(−1−3i)\)
⇒ Δ = \(2−9−3i+1+3i\)
⇒ \(Δ=−6+0i\)
Since we are given that comparing the real and imaginary parts, we find:
A = -6 and B = 0
Thus A + B = -6 + 0 = - 6
Hence, the Correct answer is Option 2.
Top Determinants MCQ Objective Questions
If \({\rm{f}}\left( {\rm{x}} \right) = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 1&2\\ {\rm{x}}&{\rm{a}} \end{array}} \right|\) then 2f(x) – f(2x) =
Answer (Detailed Solution Below)
Determinants Question 6 Detailed Solution
Download Solution PDFConcept:
If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_{11}}}&{{{\rm{a}}_{12}}}\\ {{{\rm{a}}_{21}}}&{{{\rm{a}}_{22}}} \end{array}} \right]\) then determinant of A is given by:
|A| = (a11 × a22) - (a12 × a21)
Calculation:
Given: \({\rm{f}}\left( {\rm{x}} \right) = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 1&2\\ {\rm{x}}&{\rm{a}} \end{array}} \right|\)
To find: 2f(x) – f(2x) =?
\({\rm{f}}\left( {\rm{x}} \right) = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 1&2\\ {\rm{x}}&{\rm{a}} \end{array}} \right| = \left( {1 \times {\rm{a}}} \right) - \left( {2 \times {\rm{x}}} \right)\)
\( \Rightarrow {\rm{f}}\left( {\rm{x}} \right) = {\rm{a}} - 2{\rm{x\;\;}}\)
So, \({\rm{f}}\left( {2{\rm{x}}} \right) = {\rm{a}} - 2\left( {2{\rm{x}}} \right) = {\rm{a}} - 4{\rm{x}}\) (put x = 2x)
\(\therefore 2{\rm{f}}\left( {\rm{x}} \right) - {\rm{\;f}}\left( {2{\rm{x}}} \right) = 2\left( {{\rm{a}} - 2{\rm{x}}} \right) - \left( {{\rm{a}} - 4{\rm{x}}} \right)\)
\(\Rightarrow 2{\rm{a}} - 4{\rm{x}} - {\rm{a}} + 4{\rm{x}} = {\rm{a}}\)
Hence, option (4) is correct.
Find the determinant of the matrix \(\begin{vmatrix} \rm x-a & \rm y-b & \rm z-c\\ \rm a & \rm b & \rm c \\ \rm x & \rm y & \rm z \end{vmatrix}\)
Answer (Detailed Solution Below)
Determinants Question 7 Detailed Solution
Download Solution PDFConcept:
Properties of Determinant of a Matrix:
- If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
- For any square matrix say A, |A| = |AT|.
- If we interchange any two rows (columns) of a matrix, the determinant is multiplied by -1.
- If any two rows (columns) of a matrix are same then the value of the determinant is zero.
Calculation:
\(\begin{vmatrix} \rm x-a & \rm y-b & \rm z-c\\ \rm a & \rm b & \rm c \\ \rm x & \rm y & \rm z \end{vmatrix}\)
Apply R3 → R3 - R2
= \(\begin{vmatrix} \rm x-a & \rm y-b & \rm z-c\\ \rm a & \rm b & \rm c \\ \rm x-a & \rm y-b & \rm z-c \end{vmatrix}\)
As we can see that the first and the third row of the given matrix are equal.
We know that, if any two rows (columns) of a matrix are same then the value of the determinant is zero.
\(\begin{vmatrix} \rm x-a & \rm y-b & \rm z-c\\ \rm a & \rm b & \rm c \\ \rm x & \rm y & \rm z \end{vmatrix}\) = 0
What is the value of the determinant \(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{i}}^2}}&{{{\rm{i}}^3}}\\ {{{\rm{i}}^4}}&{{{\rm{i}}^6}}&{{{\rm{i}}^8}}\\ {{{\rm{i}}^9}}&{{{\rm{i}}^{12}}}&{{{\rm{i}}^{15}}} \end{array}} \right|\) where \(\rm i = \sqrt {-1}\) ?
Answer (Detailed Solution Below)
Determinants Question 8 Detailed Solution
Download Solution PDFConcept:
\(\rm i = \sqrt {-1}\)
i2 = -1 , i3 = - i, i4 = 1, i6 = - 1 , i8 = 1 , i9 = i, i 12 = 1, and i15 = - i
Calculations:
Given determinant is \(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{i}}^2}}&{{{\rm{i}}^3}}\\ {{{\rm{i}}^4}}&{{{\rm{i}}^6}}&{{{\rm{i}}^8}}\\ {{{\rm{i}}^9}}&{{{\rm{i}}^{12}}}&{{{\rm{i}}^{15}}} \end{array}} \right|\)
Since, we have,
\(\rm i = \sqrt {-1}\)
i2 = -1 , i3 = - i, i4 = 1, i6 = - 1 , i8 = 1 , i9 = i, i 12 = 1, and i15 = - i
=\(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{-1}}}}&{{{\rm{-i}}}}\\ {{{\rm{1}}}}&{{{\rm{-1}}}}&{{{\rm{1}}}}\\ {{{\rm{i}}}}&{{{\rm{1}}}}&{{{\rm{-i}}}} \end{array}} \right|\)
=i(i - 1) + 1(-i - i) - i (1 + i)
= i2 - i - 2i - i - i2
= - 4i
The system of equations kx + y + z = 1, x + ky + z = k and x + y + kz = k2 has no solution if k equals
Answer (Detailed Solution Below)
Determinants Question 9 Detailed Solution
Download Solution PDFConcept
Let the system of equations be,
a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3
\(\; \Rightarrow \left[ {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right]\;\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} {{d_1}}\\ {{d_2}}\\ {{d_3}} \end{array}} \right]\)
⇒ AX = B
⇒ X = A-1 B = \(\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}\;B\)
⇒ If det (A) ≠ 0, the system is consistent having unique solution.
⇒ If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.
⇒ If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)
Calculation:
Given:
kx + y + z = 1, x + ky + z = k and x + y + kz = k2
\( \Rightarrow {\rm{A}} = {\rm{}}\left[ {\begin{array}{*{20}{c}} {\rm{k}}&1&1\\ 1&{\rm{k}}&1\\ 1&1&{\rm{k}} \end{array}} \right],{\rm{B}} = {\rm{}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right]{\rm{and\;C}} = \left[ {\begin{array}{*{20}{c}} 1\\ {\rm{k}}\\ {{{\rm{k}}^2}} \end{array}} \right]\)
⇒ For the given equations to have no solution, |A| = 0
\(\Rightarrow \left| {\begin{array}{*{20}{c}} {\rm{k}}&1&1\\ 1&{\rm{k}}&1\\ 1&1&{\rm{k}} \end{array}} \right| = 0\)
⇒ k(k2 – 1) - 1(k – 1) + 1(1 – k) = 0
⇒ k3 – k – k + 1 + 1 – k = 0
⇒ k3 -3k +2 = 0
⇒ (k – 1) (k – 1) (k + 2) = 0
⇒ k = 1, -2
If we put k = 1 in the above given equations, then all the equations will become the same.
Hence, the given equations have no solution if k = - 2.
Find the value of det(3A) for the following matrix:
\({\rm{A}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 4&7&1\\ { - 1}&3&2\\ { - 2}&0&5 \end{array}} \right]\)
Answer (Detailed Solution Below)
Determinants Question 10 Detailed Solution
Download Solution PDFConcept:
1. Determinant of a 3 × 3 matrix:
- Let A be a 3 × 3 matrix given by:
\({\rm{A}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{a}}&{\rm{b}}&{\rm{c}}\\ {\rm{f}}&{\rm{e}}&{\rm{d}}\\ {\rm{g}}&{\rm{h}}&{\rm{i}} \end{array}} \right]\)
then the value of |A| also written as det(A) is:
det (A) = a (ei - dh) – b (fi - dg) + c (fh - eg)
2. Property of determinant of a matrix:
- Let A be a matrix of order n × n and det(A) = k. Then for a scaler c, the following property holds:
det(cA) = cn det(A)
Calculation:
First evaluate the determinant of the given matrix:
det(A) = 4(15 - 0) – 7(-5 + 4) + 1(0 + 6)
= 4(15) -7(-1) + 1(6)
= 60 + 7 + 6
= 73
Now using the property the value of det(3A) is:
det(3A) = 33 det(A)
= 27 × 73
= 1971
If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\rm{x}}&2\\ 4&{\rm{x }} \end{array}} \right]\) and det (A2) = 64, then x is equal to
Answer (Detailed Solution Below)
Determinants Question 11 Detailed Solution
Download Solution PDFConcept:
If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_{11}}}&{{{\rm{a}}_{12}}}\\ {{{\rm{a}}_{21}}}&{{{\rm{a}}_{22}}} \end{array}} \right]\) then determinant of A is given by:
|A| = a11 × a22 – a21 × a12
|An| = |A|n
Calculation:
Given that,
\({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\rm{x}}&2\\ 4&{\rm{x }} \end{array}} \right]\) and |A2| = 64
⇒ |A| = x2 - 8 .... (1)
Given |A2| = 64
⇒ |A|2 = 64 [∵ |An| = |A|n]
⇒ |A| = (64)1/2 = 8 ....(2)
From equation 1 and 2
⇒ x2 - 8 = 8
⇒ x2 = 16
⇒ x = ± 4If the area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 square units, then what is the value of k?
Answer (Detailed Solution Below)
Determinants Question 12 Detailed Solution
Download Solution PDFConcept:
Area of a triangle with vertices (x1, y1) , (x2, y2), (x3, y3) is given by
Area = \(\rm \dfrac 12 \rm \begin{vmatrix} \rm x_1&\rm y_1 &1 \\ x_2& \rm y_2&1 \\ \rm\rm x_3 &\rm y_3&1 \end{vmatrix}\)
Calculations:
Given that, vertices of triangle are (-3, 0), (3, 0) and (0, k)
By using the above formula,
⇒ Area = \(\rm \dfrac 12 \rm \begin{vmatrix} \rm -3&\rm 0 &1 \\ 3& 0&1 \\ 0 &k&1 \end{vmatrix}\)
⇒ Area = \(\dfrac 12\)[-3(0 - k) - 0 + 1(3k)]
⇒ Area = 3k
According to the question, area of triangle is 9 square unit,
⇒ 3k = 9
⇒ k = 3
∴ Required value of k is 3 unit.
An equilateral triangle has each side equal to a. If the co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\) equals:
Answer (Detailed Solution Below)
Determinants Question 13 Detailed Solution
Download Solution PDFConcept:
Area of equilateral triangle = \(\frac{\sqrt{3}}{4}\)×a2
Calculation:
Given: The co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\)
⇒ (△ ABC ) = \(\dfrac{1}{2}\) \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\) = ( \(\frac{\sqrt{3}}{4}\)) ×a2
On squaring both side,
⇒ \(\dfrac{1}{4}\) \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}^2\) = \(\dfrac{3a^4}{16}\)
⇒ \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}^2\) = \(\dfrac{3a^4}{4}\)
What are the values of x that satisfy the equation \(\left| {\begin{array}{*{20}{c}} x&0&2\\ {2x}&2&1\\ 1&1&1 \end{array}} \right| + \left| {\begin{array}{*{20}{c}} {3x}&0&2\\ {{x^2}}&2&1\\ 0&1&1 \end{array}} \right| = 0\;?\)
Answer (Detailed Solution Below)
Determinants Question 14 Detailed Solution
Download Solution PDFConcept:
If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right]\) then determinant of A is given by: |A| = (a11 × a22) - (a12 - a21).
If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right]\) then determinant of A is given by:
|A| = a11 × {(a22 × a33) - (a23 × a32)} - a12 × {(a21 × a33) - (a23 × a31)} + a13 × {(a21 × a32) - (a22 × a31)}
Calculation:
\(\Rightarrow \left| {\begin{array}{*{20}{c}} x&0&2\\ {2x}&2&1\\ 1&1&1 \end{array}} \right| = x \times \left( {2 - 1} \right) - 0 \times \left( {2x - 1} \right) + 2 \times \left( {2x - 2} \right) = 5x - 4\)
\(\Rightarrow \left| {\begin{array}{*{20}{c}} {3x}&0&2\\ {{x^2}}&2&1\\ 0&1&1 \end{array}} \right| = 3x \times \left( {2 - 1} \right) - 0 \times \left( {{x^2} - 0} \right) + 2 \times \left( {{x^2} - 0} \right) = 2{x^2} + 3x\)
\(\Rightarrow \left| {\begin{array}{*{20}{c}} x&0&2\\ {2x}&2&1\\ 1&1&1 \end{array}} \right| + \left| {\begin{array}{*{20}{c}} {3x}&0&2\\ {{x^2}}&2&1\\ 0&1&1 \end{array}} \right| = \left( {5x - 4} \right) + \left( {2{x^2} + 3x} \right) = 2{x^2} + 8x - 4 = 0\)
⇒ 2x2 + 8x - 4 = 0
By comparing the equation 2x2 + 8x - 4 = 0 with ax2 + bx + c = 0, we get a = 2, b = 8 and c = - 4.
\(\Rightarrow x = \frac{{ - b \pm \sqrt {{b^2} - 4ac\;} }}{{2a}} = \frac{{ - 8 \pm \sqrt {64 + 32} }}{4} = - 2 \pm \sqrt 6 \)If A is a 2 × 2 matrix and |A| = 5, what is |5A| ? (| | denotes determinant)
Answer (Detailed Solution Below)
Determinants Question 15 Detailed Solution
Download Solution PDFConcept:
Properties of determinants:
For a n×n matrix A, det(kA) = kn det(A).
Calculation:
Given:
|A| = 5
k = 5
From the properties of the determinants, we know that |KA| = Kn |A|, where n is the order of the determinant.
Here, n = 2, therefore, the answer is K2 |A|.
|5A| = 52|A|
|5A| = 52 × 5 = 125