Algebra MCQ Quiz - Objective Question with Answer for Algebra - Download Free PDF

Last updated on May 23, 2025

Practice Algebra MCQs with Testbook to ace this section in the Quantitative Aptitude paper. Many competitive exams such as SSC CGL, SBI PO, UPSC, RRB NTPC, etc. have Quantitative Aptitude in their syllabus that includes various Algebra Objective Questions. Algebra is the part of mathematics in which letters and other general symbols are used to represent numbers and quantities in formulae, expressions and equations. Understanding the real-life implications of Algebra Questions Answers is very important to truly grasp the spirit of Algebra. Solve these Algebra Quizzes prepared by Testbook to strengthen your Algebra skills. Algebra is a very interesting topic and if practised thoroughly, it is pretty easy to solve. Many candidates look at Algebra MCQs as one of the scoring sections of Quant. Solving the Algebra Quiz will help you perfect your skills and help you crack this section in a shorter time. Take a look at this article and practice Algebra Questions Answers with solutions and explanations.

Latest Algebra MCQ Objective Questions

Algebra Question 1:

(a + b)3 = ?

  1. a3 + b3 + ab(a + b)
  2. a3 + b3 + 3ab2
  3. a3 + b3 + 3ab(a + b)
  4. a3 + b3 + 3a2b

Answer (Detailed Solution Below)

Option 3 : a3 + b3 + 3ab(a + b)

Algebra Question 1 Detailed Solution

Given:

Expression = (a + b)3

Formula Used:

Binomial expansion formula for (x + y)n

Calculations:

(a + b)3 = (a + b) × (a + b) × (a + b)

⇒ (a + b)3 = (a2 + 2ab + b2) × (a + b)

⇒ (a + b)3 = a × (a2 + 2ab + b2) + b × (a2 + 2ab + b2)

⇒ (a + b)3 = a3 + 2a2b + ab2 + a2b + 2ab2 + b3

⇒ (a + b)3 = a3 + (2a2b + a2b) + (ab2 + 2ab2) + b3

⇒ (a + b)3 = a3 + 3a2b + 3ab2 + b3

⇒ (a + b)3 = a3 + b3 + 3ab(a + b)

(a + b)3 = a3 + b3 + 3ab(a + b)

Algebra Question 2:

If 7x + 3y = 4 and 2x + y = 2, then find the value of x and y.

  1. x = 6, y = -2
  2. x = -2, y = 6
  3. x = -3, y = 4
  4. x = 4, y = -3

Answer (Detailed Solution Below)

Option 2 : x = -2, y = 6

Algebra Question 2 Detailed Solution

Given:

7x + 3y = 4 and 2x + y = 2

Calculation:

7x + 3y = 4      ----(1)

2x + y = 2     ----(2)

By solving,

equation (1) - 3 × equation(2)

⇒ 7x + 3y - 3(2x + y) = 4 - (3 × 2)

⇒ x = -2

Putting the value of x in equation (1)

7x + 3y = 4

⇒ 7 × (-2) + 3y = 4

⇒ y = 6

∴ The value of x and y is -2 and 6.

Algebra Question 3:

If \(\rm x+\frac{1}{x}=15\), then the value of \(\rm \left(x^2+\frac{1}{x^2}\right)\) is:

  1. 225
  2. 223
  3. 17
  4. 13
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 223

Algebra Question 3 Detailed Solution

If x + 1 / x = 15, then find the value of x2 + 1 / x2.

Solution:

Square both sides:

(x + 1 / x)2 = 152

x2 + 2 × (1 / x) × x + 1 / x2 = 225

x2 + 2 + 1 / x2 = 225

x2 + 1 / x2 = 225 - 2

x2 + 1 / x2 = 223

∴ The value of x2 + 1 / x2 is 223.

Algebra Question 4:

What is the unit digit of (593)23 × (124)26

  1. 8
  2. 6
  3. 4
  4. 2
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : 2

Algebra Question 4 Detailed Solution

Given:

We need to find the unit digit of (593)23 × (124)26.

Calculation:

First, look at the unit digit of (593)23:

593 ends in 3. The cycle of powers for 3 is 3, 9, 7, 1, repeating every 4 powers.
23 mod 4

⇒ 3 (since 23 divided by 4 leaves a remainder of 3).

So, the unit digit of (593)23 is 7 (the third number in the cycle).

Next, look at the unit digit of (124)26:

124 ends in 4. The unit digit of the powers of 4 alternates between 4 and 6 every second power.

26 is even, so ⇒ the unit digit of (124)26 is 6.

Therefore, the unit digit of the product (593)23 × (124)26  is found by multiplying the unit digits of each component (7 × 6):

Since the unit digit of 7 × 6 is 2, the unit digit of (593)23 × (124)26 is 2.

Algebra Question 5:

Find the value of x:

\(\frac{2}{5}(x)+\frac{3}{10}(x)-\frac{3}{5}(x)\) = 479

  1. 4890 
  2. 5190 
  3. 4790 
  4. 4690
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 4790 

Algebra Question 5 Detailed Solution

Find the value of x:

\(\frac{2}{5}(x) + \frac{3}{10}(x) - \frac{3}{5}(x) = 479\)

Calculation:

Combining the terms with a common denominator:

\(\frac{2}{5}(x) - \frac{3}{5}(x) + \frac{3}{10}(x)\)

\(\frac{2x - 3x}{5} + \frac{3x}{10}\)

\(\frac{-x}{5} + \frac{3x}{10}\)

Finding a common denominator for the fractions:

\(\frac{-2x}{10} + \frac{3x}{10}\)

\(\frac{-2x + 3x}{10}\)

\(\frac{x}{10} = 479\)

Multiplying both sides by 10:

479 ×  10

x = 4790

The value of x is 4790.

Top Algebra MCQ Objective Questions

If x − \(\rm\frac{1}{x}\) = 3, the value of x3 − \(\rm\frac{1}{x^3}\) is

  1. 36
  2. 63
  3. 99
  4. none of these

Answer (Detailed Solution Below)

Option 1 : 36

Algebra Question 6 Detailed Solution

Download Solution PDF

Given:

x - 1/x = 3

Concept used:

a3 - b3 = (a - b)3 + 3ab(a - b)

Calculation:

x3 - 1/x3 = (x - 1/x)3 + 3 × x × 1/x × (x - 1/x)

⇒ (x - 1/x)3 + 3(x - 1/x)

⇒ (3)3 + 3 × (3)

⇒ 27 + 9 = 36

∴ The value of x3 - 1/x3 is 36.

Alternate Method If x - 1/x = a, then x3 - 1/x3 = a3 + 3a

Here a = 3

x - 1/x3 = 33 + 3 × 3

= 27 + 9

= 36

If x = √10 + 3 then find the value of \(x^3 - \frac{1}{x^3}\)

  1. 334
  2. 216
  3. 234
  4. 254

Answer (Detailed Solution Below)

Option 3 : 234

Algebra Question 7 Detailed Solution

Download Solution PDF

Given:

x = √10 + 3

Formula used: 

a2 - b2 = (a + b)(a - b)

a3 - b3 = (a - b)(a2 + ab + b2)

Calculation:

\(\begin{array}{l} \frac{1}{x} = \frac{1}{{\sqrt{10}{\rm{\;}} + {\rm{\;}}3}}\\ = {\rm{\;}}\frac{{\sqrt{10} {\rm{\;}} - {\rm{\;}}3}}{{\left( {\sqrt{10} + {\rm{\;}}3} \right)\left( {\sqrt{10} {\rm{\;}} - {\rm{\;}}3} \right)}}\\ = {\rm{\;}}\frac{{\sqrt{10} {\rm{\;}} - {\rm{\;}}3 }}{{{{\left( {\sqrt{10} } \right)}^2} - {{\left( {3} \right)}^2}}} \end{array}\)

⇒ 1/x = √10 - 3

\( \Rightarrow x - \;\frac{1}{x} = \;\sqrt 10 + 3\; -\sqrt10 + 3 = 6\)     ----(1)

Squaring both side of (1),

\( \Rightarrow (x - \;\frac{1}{x})^2 = \;(6\;)^2\)

\( \Rightarrow {x^2} - 2x\frac{1}{x} + \;\frac{1}{{{x^2}}} = 36\)

\( \Rightarrow {x^2} - 2 + \;\frac{1}{{{x^2}}} = 36\)

\( \Rightarrow {x^2} + \;\frac{1}{{{x^2}}} = 38\)    -----(2)

\( ∴ \;{x^3} - \;\frac{1}{{{x^3}}}\; = \left( {\;x - \;\frac{1}{x}\;} \right)\left( {\;{x^2} + x\frac{1}{x} + \;\frac{1}{{{x^2}}}\;} \right)\)

\(\Rightarrow \;{x^3} - \;\frac{1}{{{x^3}}}\; = \left( {\;x - \;\frac{1}{x}\;} \right)\left( {\;{x^2} + \;\frac{1}{{{x^2}}} + 1} \right)\)

\(\Rightarrow \;{x^3} - \;\frac{1}{{{x^3}}}\; = 6 \times (38 + 1)\)

\(x^3 - \frac{1}{x^3} = 234\)

∴ The required value is 234.

 Shortcut TrickGiven:

x = √10 + 3

Formula used: 

\(\rm If ~x -\frac{1}{x} = a \)

⇒ \(x^3 - \frac{1}{x^3} = a^3 + 3a\)

Calculation:

x = √10 + 3

⇒ 1/x = √10 - 3

⇒ \(x -\frac{1}{x} = 6\) 

⇒ \(x^3 - \frac{1}{x^3} = 6^3 + 3\times 6\)

⇒ \(x^3 - \frac{1}{x^3} = 234\)

∴ The required value is 234.

If p – 1/p = √7, then find the value of p3 – 1/p3.

  1. 12√7
  2. 4√5
  3. 8√7
  4. 10√7

Answer (Detailed Solution Below)

Option 4 : 10√7

Algebra Question 8 Detailed Solution

Download Solution PDF

Given:

p – 1/p = √7

Formula:

P3 – 1/p3 = (p – 1/p)3 + 3(p – 1/p)

Calculation:

P3 – 1/p3 = (p – 1/p)3 + 3 (p – 1/p)

⇒ p3 – 1/p3 = (√7)3 + 3√7

⇒ p3 – 1/p3 = 7√7 + 3√7

⇒ p3 – 1/p3 = 10√7

Shortcut Trick x - 1/x = a, then x3 - 1/x3 = a3 + 3a

Here, a = √7                                                          ( put the value in required eqn )

⇒p3 – 1/p3 = (√7)3 + 3 × √7 = 7√7 + 3√7

 ⇒p3 – 1/p3  = 10√7.

Hence; option 4) is correct.

If a + b + c = 14, ab + bc + ca = 47 and abc = 15 then find the value of a3 + b3 +c3.

  1. 815
  2. 825
  3. 835
  4. 845

Answer (Detailed Solution Below)

Option 1 : 815

Algebra Question 9 Detailed Solution

Download Solution PDF

Given:

a + b + c = 14, ab + bc + ca = 47 and abc = 15

Concept used:

a³ + b³ + c³ - 3abc = (a + b + c) × [(a + b + c)² - 3(ab + bc + ca)]

Calculations:

a³ + b³ + c³ - 3abc = 14 × [(14)² - 3 × 47]

⇒ a³ + b³ + c³ – 3 × 15 = 14(196 – 141)

⇒ a³ + b³ + c³ = 14(55) + 45

⇒ 770 + 45

⇒ 815

∴ The correct choice is option 1.

The sum of values of x satisfying x2/3 + x1/3 = 2 is:

  1. -3
  2. 7
  3. -7
  4. 3

Answer (Detailed Solution Below)

Option 3 : -7

Algebra Question 10 Detailed Solution

Download Solution PDF

Formula used:

(a + b)3 = a3 + b3 + 3ab(a + b)

Calculation:

⇒ x2/3 + x1/3 = 2

⇒ (x2/3 + x1/3)3 = 23

⇒ x2 + x + 3x(x2/3 + x1/3) = 8

⇒ x2 + 7x - 8 = 0

⇒ x2 + 8x - x - 8 = 0

⇒ x (x + 8) - 1 (x + 8) = 0

⇒ x = - 8 or x = 1

∴ Sum of values of x = -8 + 1 = - 7.

If a + b + c = 0, then (a3 + b3 + c3)2 = ?

  1. 3a2b2c2
  2. 9a2b2c2
  3. 9abc
  4. 27abc

Answer (Detailed Solution Below)

Option 2 : 9a2b2c2

Algebra Question 11 Detailed Solution

Download Solution PDF

Formula used:

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

Calculation:

a + b + c = 0

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

⇒ a3 + b3 + c3 - 3abc = 0 × (a2 + b2 + c2 - ab - bc - ca) = 0

⇒ a3 + b3 + c3 - 3abc = 0

⇒ a3 + b3 + c3 = 3abc 

Now, (a3 + b3 + c3)2 = (3abc)2 = 9a2b2c2 

If 3x2 – ax + 6 = ax2 + 2x + 2 has only one (repeated) solution, then the positive integral solution of a is:

  1. 3
  2. 2
  3. 4
  4. 5

Answer (Detailed Solution Below)

Option 2 : 2

Algebra Question 12 Detailed Solution

Download Solution PDF

Given:

3x2 – ax + 6 = ax2 + 2x + 2

⇒ 3x2 – ax2 – ax – 2x + 6 – 2 = 0

⇒ (3 – a)x2 – (a + 2)x + 4 = 0

Concept Used:

If a quadratic equation (ax+ bx + c=0) has equal roots, then discriminant should be zero i.e. b2 – 4ac = 0

Calculation:

⇒ D = B2 – 4AC = 0

⇒ (a + 2)2 – 4(3 – a)4 = 0

⇒ a2 + 4a + 4 – 48 + 16a = 0

⇒ a2 + 20a – 44 = 0

⇒ a2 + 22a – 2a – 44 = 0

⇒ a(a + 22) – 2(a + 22) = 0

⇒ a = 2, -22

∴ Positive integral solution of a = 2

Find the degree of the polynomial 2x5 + 2x3y3 + 4y4 + 5.

  1. 3
  2. 5
  3. 6
  4. 9

Answer (Detailed Solution Below)

Option 3 : 6

Algebra Question 13 Detailed Solution

Download Solution PDF

Given

2x5 + 2x3y3 + 4y4 + 5.

Concept

The degree of a polynomial is the highest of the degrees of its individual terms with non-zero coefficients.

Solution

Degree of the polynomial in 2x5 = 5

Degree of the polynomial in 2x3y3 = 6

Degree of the polynomial in 4y4 = 4

Degree of the polynomial in 5 = 0

Hence, the highest degree is 6

∴ Degree of polynomial = 6

Mistake Points  

One may choose 5 as the correct option due to x5 but the correct answer will be 6 as 2x3y3 has the highest power of 6.

Important Points

 The degree of a polynomial is the highest of the degrees of its individual terms with non-zero coefficients. Here for a specific value when x will be equal to y then the equation will be:

2x5 + 2x3y3 + 4y+ 5

= 2x5 + 2x6 + 4x4 + 5

∴ The degree of the polynomial will be 6

 

If α and β are roots of the equation x2 – x – 1 = 0, then the equation whose roots are α/β and β/α is:

  1. x2 + 3x – 1 = 0
  2. x2 + x – 1 = 0
  3. x2 – x + 1 = 0
  4. x2 + 3x + 1 = 0

Answer (Detailed Solution Below)

Option 4 : x2 + 3x + 1 = 0

Algebra Question 14 Detailed Solution

Download Solution PDF

Given:

x2 – x – 1 = 0

Formula used:

If the given equation is ax2 + bx + c = 0

Then Sum of roots = -b/a

And Product of roots = c/a

Calculation:

As α and β are roots of x2 – x – 1 = 0, then

⇒ α + β = -(-1) = 1

⇒ αβ = -1

Now, if (α/β) and (β/α) are roots then,

⇒ Sum of roots = (α/β) + (β/α)

⇒ Sum of roots = (α2 + β2)/αβ

⇒ Sum of roots = [(α + β)2 – 2αβ]/αβ

⇒ Sum of roots = (1)2 – 2(-1)]/(-1) = -3

⇒ Product of roots = (α/β) × (β/α) = 1

Now, then the equation is,

⇒ x2 – (Sum of roots)x + Product of roots = 0

⇒ x2 – (-3)x + (1) = 0

⇒ x2 + 3x + 1 = 0

Find the product of two consecutive numbers where four times the first number is 10 more than thrice the second number.

  1. 210
  2. 182
  3. 306
  4. 156

Answer (Detailed Solution Below)

Option 2 : 182

Algebra Question 15 Detailed Solution

Download Solution PDF

GIVEN :

Four times the first number is 10 more than thrice the second number.

CALCULATION :

Suppose the numbers are ‘a’ and ‘a + 1’.

According to the question :

4a = 3 × (a + 1) + 10

⇒ a = 13

Hence, the numbers are 13 and 14.

∴ Product = 13 × 14 = 182
Get Free Access Now
Hot Links: teen patti bodhi teen patti master list teen patti lucky teen patti cash game teen patti real cash