Simplification MCQ Quiz - Objective Question with Answer for Simplification - Download Free PDF
Last updated on Jun 17, 2025
Latest Simplification MCQ Objective Questions
Simplification Question 1:
Which one is the largest among the fractions \(\left(\frac{4}{9}\right),\left(\frac{5}{8}\right),\left(\frac{2}{3}\right)\) and \(\left(\frac{3}{4}\right) \)?
Answer (Detailed Solution Below)
Simplification Question 1 Detailed Solution
Given:
The fractions are: (4/9), (5/8), (2/3), and (3/4).
Method:
We will compare the fractions by converting them to decimals or finding a common denominator. First, let's convert each fraction to a decimal:
4/9 = 0.4444
5/8 = 0.625
2/3 = 0.6666
3/4 = 0.75
Comparing the decimals:
0.4444, 0.625, 0.6666, and 0.75
Conclusion:
The largest value is 0.75, which corresponds to the fraction 3/4.
Therefore, the largest fraction is 3/4.
Simplification Question 2:
Solve: \(\frac{(-2-3) \times(5+3) \div(-2-3)}{(-6-4) \div(-7-5)}\)
Answer (Detailed Solution Below)
Simplification Question 2 Detailed Solution
Given:
\(\frac{(-2-3) ×(5+3) ÷(-2-3)}{(-6-4) ÷(-7-5)}\)
Formula Used:
Follow the order of operations (PEMDAS/BODMAS)
Calculation:
Calculate the values step by step:
(-2 - 3) = -5
(5 + 3) = 8
(-2 - 3) = -5
(-6 - 4) = -10
(-7 - 5) = -12
Now substitute back into the expression:
\(\left(-5 × 8 ÷ -5\right) ÷ \left(-10 ÷ -12\right)\)
Simplify inside the parentheses first:
-5 × 8 = -40
-40 ÷ -5 = 8
Simplify the second part:
-10 ÷ -12 = \(\frac{10}{12} = \frac{5}{6}\)
Now divide the results:
8 ÷ \(\frac{5}{6}\) = 8 × (6/5)
48/5 = 9.6
The correct answer is option 4, 9.6.
Simplification Question 3:
Find the value of \(\rm \left[(20\times 13)\times \left\{4\div 4\times \frac{(19-13)}{3}\right\}\right]\)
Answer (Detailed Solution Below)
Simplification Question 3 Detailed Solution
Given:
The expression is: (20 × 13) × {4 ÷ 4 × (19 - 13) / 3}
Formula Used:
Follow the BODMAS rule (Brackets, Orders, Division, Multiplication, Addition, Subtraction).
Calculation:
⇒ (20 × 13) × {4 ÷ 4 × (19 - 13) / 3}
⇒ (20 × 13) × {4 ÷ 4 × 6 / 3}
⇒ (20 × 13) × {1 × 6 / 3}
⇒ (20 × 13) × 2
⇒ 20 × 13 = 260
⇒ 260 × 2 = 520
The value of the expression is 520.
Simplification Question 4:
\(\frac{1}{\sqrt{9} + \sqrt{11}} + \frac{1}{\sqrt{11} + \sqrt{13}} + \cdots + \frac{1}{\sqrt{2023} + \sqrt{2025}} \) =
Answer (Detailed Solution Below)
Simplification Question 4 Detailed Solution
Given:
\(\frac{1}{\sqrt{9} + \sqrt{11}} + \frac{1}{\sqrt{11} + \sqrt{13}} + \cdots + \frac{1}{\sqrt{2023} + \sqrt{2025}}\) = ?
Formula used:
Calculation:
⇒ (
⇒ -
⇒ 45 - 3 = 42
∴ The correct answer is option (4).
Simplification Question 5:
What is \(\frac{1}{\sqrt{10}+\sqrt{9}}+\frac{1}{\sqrt{11}+\sqrt{10}}+ \frac{1}{\sqrt{12}+\sqrt{11}}+\ldots+\frac{1}{\sqrt{196}+\sqrt{195}}\) equal to?
Answer (Detailed Solution Below)
Simplification Question 5 Detailed Solution
Concept Used:
\({1 \over √n + √(n-1)} = {1 \over √ n + √ (n-1)} \times {(√n - √(n-1)) \over(√n - √(n-1))}\)
\({1 \over √n + √(n-1)} = {√n - √(n-1) \over (n - (n-1))} = √ n - √ (n-1)\)
Calculation:
\({1 \over √10 + √9} = { (√10 - √9) \over (√ 10 + √9)(√10 - √9)}= {√ 10 - √9 \over (10 - 9 )}\) = √10 - √9
Similarly,
\({1 \over √11 + √10} = \) √11 - √10, and \({1 \over √12 + √11} = √12 - √11\)
putting the values in the equation,
⇒ (√10 - √9) + (√11 - √10) + (√12 -√11) + ................ + (√196 - √195)
⇒ (-√9 + √196)
⇒ (-3 + 14) = 11
∴ The value of this expression is 11
Top Simplification MCQ Objective Questions
Which of the following number is largest among all?
\(0.7,\;0.\bar 7,\;0.0\bar 7,0.\overline {07}\)
Answer (Detailed Solution Below)
Simplification Question 6 Detailed Solution
Download Soln PDFWhat is the value of \(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}?\)
Answer (Detailed Solution Below)
Simplification Question 7 Detailed Solution
Download Soln PDFWhat will come in the place of question mark (?) in the following question?
\(? = \sqrt[5]{{{{\left( {243} \right)}^2}}}\)
Answer (Detailed Solution Below)
Simplification Question 8 Detailed Solution
Download Soln PDFWhat is the square root of (8 + 2√15)?
Answer (Detailed Solution Below)
Simplification Question 9 Detailed Solution
Download Soln PDFFormula used:
(a + b)2 = a2 + b2 + 2ab
Calculation:
Given expression is:
\(\sqrt {8\; + \;2\sqrt {15} \;} \)
⇒ \(\sqrt {5\; + \;3\; + \;2\times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{(\sqrt 5 )}^2}\; + \;{{\left( {\sqrt 3 } \right)}^2}\; + \;2 \times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{\left( {\;\sqrt 5 \; + \;\sqrt 3 \;} \right)}^2}\;} \)
⇒ \(\sqrt 5 + \sqrt 3 \)
On simplification \(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \) reduces to
Answer (Detailed Solution Below)
Simplification Question 10 Detailed Solution
Download Soln PDF\(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \)
Since,
a2 - b2 = (a - b) ( a + b)
\(\begin{array}{l} \Rightarrow \sqrt {\left( {0.65 + 0.16} \right)\left( {0.65 - 0.16} \right)} \\ \Rightarrow \sqrt {\left( {0.81} \right)\left( {0.49} \right)} \\ \Rightarrow \sqrt {\left( {0.9} \right)\left( {0.9} \right) \times \left( {0.7} \right)\left( {0.7} \right)} \end{array}\)
⇒ 0.9 × 0.7 = 0.63
∴ Answer is 0.63The square root of ((10 + √25)(12 – √49)) is:
Answer (Detailed Solution Below)
Simplification Question 11 Detailed Solution
Download Soln PDFAnswer (Detailed Solution Below)
Simplification Question 12 Detailed Solution
Download Soln PDFIf √3n = 729, then the value of n is equal to: