Simplification MCQ Quiz - Objective Question with Answer for Simplification - Download Free PDF

Last updated on Jun 17, 2025

Simplification is the process of replacing a mathematical expression with an equivalent one, that is simpler. Make simplification even more simple by practising these Simplification MCQs Quiz with Testbook. Get solutions and explanations to the solutions of the given questions. Estimate your preparation level with these Simplification objective questions. Also, get tips and tricks to improve your speed and accuracy while solving these Simplification question answers!

Latest Simplification MCQ Objective Questions

Simplification Question 1:

Which one is the largest among the fractions \(\left(\frac{4}{9}\right),\left(\frac{5}{8}\right),\left(\frac{2}{3}\right)\) and \(\left(\frac{3}{4}\right) \)?

  1. \(\frac{2}{3}\)
  2. \(\frac{4}{9}\)
  3. \(\frac{5}{8}\)
  4. \(\frac{3}{4}\)
  5. None of the above
Enroll For Free Now

Answer (Detailed Solution Below)

Option 4 : \(\frac{3}{4}\)

Simplification Question 1 Detailed Solution

Given:

The fractions are: (4/9), (5/8), (2/3), and (3/4).

Method:

We will compare the fractions by converting them to decimals or finding a common denominator. First, let's convert each fraction to a decimal:

4/9 = 0.4444

5/8 = 0.625

2/3 = 0.6666

3/4 = 0.75

Comparing the decimals:

0.4444, 0.625, 0.6666, and 0.75

Conclusion:

The largest value is 0.75, which corresponds to the fraction 3/4.

Therefore, the largest fraction is 3/4.

Simplification Question 2:

Solve: \(\frac{(-2-3) \times(5+3) \div(-2-3)}{(-6-4) \div(-7-5)}\)

  1. 96
  2. 6.9
  3. -9.6
  4. 9.6
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : 9.6

Simplification Question 2 Detailed Solution

Given:

\(\frac{(-2-3) ×(5+3) ÷(-2-3)}{(-6-4) ÷(-7-5)}\)

Formula Used:

Follow the order of operations (PEMDAS/BODMAS)

Calculation:

Calculate the values step by step:

(-2 - 3) = -5

(5 + 3) = 8

(-2 - 3) = -5

(-6 - 4) = -10

(-7 - 5) = -12

Now substitute back into the expression:

\(\left(-5 × 8 ÷ -5\right) ÷ \left(-10 ÷ -12\right)\)

Simplify inside the parentheses first:

-5 × 8 = -40

-40 ÷ -5 = 8

Simplify the second part:

-10 ÷ -12 = \(\frac{10}{12} = \frac{5}{6}\)

Now divide the results:

8 ÷ \(\frac{5}{6}\) = 8 × (6/5)

48/5 = 9.6

The correct answer is option 4, 9.6.

Simplification Question 3:

Find the value of \(\rm \left[(20\times 13)\times \left\{4\div 4\times \frac{(19-13)}{3}\right\}\right]\)

  1. 520
  2. 527
  3. 510
  4. 525
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 520

Simplification Question 3 Detailed Solution

Given:

The expression is: (20 × 13) × {4 ÷ 4 × (19 - 13) / 3}

Formula Used:

Follow the BODMAS rule (Brackets, Orders, Division, Multiplication, Addition, Subtraction).

Calculation:

⇒ (20 × 13) × {4 ÷ 4 × (19 - 13) / 3}

⇒ (20 × 13) × {4 ÷ 4 × 6 / 3}

⇒ (20 × 13) × {1 × 6 / 3}

⇒ (20 × 13) × 2

⇒ 20 × 13 = 260

⇒ 260 × 2 = 520

The value of the expression is 520.

Simplification Question 4:

\(\frac{1}{\sqrt{9} + \sqrt{11}} + \frac{1}{\sqrt{11} + \sqrt{13}} + \cdots + \frac{1}{\sqrt{2023} + \sqrt{2025}} \) =

  1. 35
  2. 0
  3. 20
  4. 21

Answer (Detailed Solution Below)

Option 4 : 21

Simplification Question 4 Detailed Solution

Given:

\(\frac{1}{\sqrt{9} + \sqrt{11}} + \frac{1}{\sqrt{11} + \sqrt{13}} + \cdots + \frac{1}{\sqrt{2023} + \sqrt{2025}}\) = ?

Formula used:

1a+b=ba" id="MathJax-Element-23-Frame" role="presentation" style="position: relative;" tabindex="0">1a+b=ba

Calculation:

19+11+111+13++12023+2025" id="MathJax-Element-24-Frame" role="presentation" style="position: relative;" tabindex="0">19+11+111+13++12023+2025

⇒ (119" id="MathJax-Element-25-Frame" role="presentation" style="position: relative;" tabindex="0">119 ) + (1311" id="MathJax-Element-26-Frame" role="presentation" style="position: relative;" tabindex="0">1311 ) + ... + (20252023" id="MathJax-Element-27-Frame" role="presentation" style="position: relative;" tabindex="0">20252023 )

⇒ -9" id="MathJax-Element-28-Frame" role="presentation" style="position: relative;" tabindex="0">9 + 2025" id="MathJax-Element-29-Frame" role="presentation" style="position: relative;" tabindex="0">2025

9=3" id="MathJax-Element-30-Frame" role="presentation" style="position: relative;" tabindex="0">9=3 , 2025=45" id="MathJax-Element-31-Frame" role="presentation" style="position: relative;" tabindex="0">2025=45

⇒ 45 - 3 = 42

∴ The correct answer is option (4).

Simplification Question 5:

What is \(\frac{1}{\sqrt{10}+\sqrt{9}}+\frac{1}{\sqrt{11}+\sqrt{10}}+ \frac{1}{\sqrt{12}+\sqrt{11}}+\ldots+\frac{1}{\sqrt{196}+\sqrt{195}}\) equal to?

  1. 17
  2. 14
  3. 11
  4. 10
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 11

Simplification Question 5 Detailed Solution

Concept Used: 

\({1 \over √n + √(n-1)} = {1 \over √ n + √ (n-1)} \times {(√n - √(n-1)) \over(√n - √(n-1))}\)

\({1 \over √n + √(n-1)} = {√n - √(n-1) \over (n - (n-1))} = √ n - √ (n-1)\)

Calculation:

\({1 \over √10 + √9} = { (√10 - √9) \over (√ 10 + √9)(√10 - √9)}= {√ 10 - √9 \over (10 - 9 )}\) = √10 - √9

Similarly, 

\({1 \over √11 + √10} = \) √11 - √10, and \({1 \over √12 + √11} = √12 - √11\) 

putting the values in the equation, 

⇒ (√10 - √9) + (√11 - √10) + (√12 -√11) + ................ + (√196 - √195) 

⇒ (-√9 + √196)

⇒  (-3 + 14) = 11

∴ The value of this expression is 11

Top Simplification MCQ Objective Questions

Which of the following number is largest among all?

\(0.7,\;0.\bar 7,\;0.0\bar 7,0.\overline {07}\)

  1. \(0.\overline {07} \)
  2. \(0.0\bar 7\)
  3. 0.7
  4. \(0.\bar 7\)

Answer (Detailed Solution Below)

Option 4 : \(0.\bar 7\)

Simplification Question 6 Detailed Solution

Download Soln PDF

Concebt used

a.b̅ = a.bbbbbb

a.0b̅ = a.0bbbb

Calculation

0.7 = 0.700000 ̇....

\(0.\bar7 = 0.77777 \ldots\)

\(0.0\bar7 = 0.077777 \ldots\)

\(0.\overline {07} = 0.070707 \ldots\)

Now, 0.7777…  or \(0.\bar7\) is largest among all.

What is the value of \(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}?\)

  1. 36
  2. 37
  3. 39
  4. 38

Answer (Detailed Solution Below)

Option 2 : 37

Simplification Question 7 Detailed Solution

Download Soln PDF

Solution:

\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)

= 25/2 + 37/3 + 73/6

= (75 + 74 + 73)/6

= 222/6

= 37


Shortcut Trick

\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)

= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)

= 36 + 1 = 37

What will come in the place of question mark (?) in the following question?

\(? = \sqrt[5]{{{{\left( {243} \right)}^2}}}\)

  1. 3
  2. 7
  3. 6
  4. 8
  5. 9

Answer (Detailed Solution Below)

Option 5 : 9

Simplification Question 8 Detailed Solution

Download Soln PDF

Solution:

We have to follow the BODMAS rule

quesImage82

Calculation:

\(? = \sqrt[5]{{{{\left( {243} \right)}^2}}}\)

 

\(⇒ ? = (243)^{\frac{2}{5}}\)

\(⇒ ? = (3 × 3 × 3 × 3 × 3)^{2⁄5}\)

\(⇒ ? = (3^5)^{2⁄5}\)

⇒ ? = 32

∴ ? = 9

What is the square root of (8 + 2√15)?

  1. √5 + √3
  2. 2√2 + 2√6
  3. 2√5 + 2√3
  4. √2 + √6

Answer (Detailed Solution Below)

Option 1 : √5 + √3

Simplification Question 9 Detailed Solution

Download Soln PDF

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

Given expression is:

\(\sqrt {8\; + \;2\sqrt {15} \;} \)

⇒  \(\sqrt {5\; + \;3\; + \;2\times \sqrt 5 \times \sqrt 3 \;} \)

⇒  \(\sqrt {{{(\sqrt 5 )}^2}\; + \;{{\left( {\sqrt 3 } \right)}^2}\; + \;2 \times \sqrt 5 \times \sqrt 3 \;} \)

⇒  \(\sqrt {{{\left( {\;\sqrt 5 \; + \;\sqrt 3 \;} \right)}^2}\;} \)

⇒  \(\sqrt 5 + \sqrt 3 \)

On simplification \(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \) reduces to

  1. 0.63
  2. 0.65
  3. 0.54
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 0.63

Simplification Question 10 Detailed Solution

Download Soln PDF

\(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \)

Since,

a2 - b2 = (a - b) ( a + b)

\(\begin{array}{l} \Rightarrow \sqrt {\left( {0.65 + 0.16} \right)\left( {0.65 - 0.16} \right)} \\ \Rightarrow \sqrt {\left( {0.81} \right)\left( {0.49} \right)} \\ \Rightarrow \sqrt {\left( {0.9} \right)\left( {0.9} \right) \times \left( {0.7} \right)\left( {0.7} \right)} \end{array}\)

⇒ 0.9 × 0.7 = 0.63

∴ Answer is 0.63

The square root of ((10 + √25)(12 – √49)) is:

  1. 4√3 
  2. 3√3
  3. 5√3
  4. 2√3

Answer (Detailed Solution Below)

Option 3 : 5√3

Simplification Question 11 Detailed Solution

Download Soln PDF

Concept:

We can find √x using the factorisation method.

Calculation:

√[(10 + √25) (12 - √49)]

⇒ √[(10 + 5)(12 – 7)]

⇒ √(15 × 5)

⇒ √(3 × 5 × 5)

⇒ 5√3

Find the value of x:

23 × 34 × 1080 ÷ 15 = 6x

  1. 4
  2. 6
  3. 8
  4. 2

Answer (Detailed Solution Below)

Option 2 : 6

Simplification Question 12 Detailed Solution

Download Soln PDF

Given,

23 × 34 × 1080 ÷ 15 = 6x

⇒ 23 × 34 × 72 = 6x

⇒ 23 × 34 × (2 × 62) = 6x

⇒ 24 × 34 × 62 = 6x

⇒ (2 × 3)4 × 62 = 6x           [∵ xm × ym = (xy)m]

⇒ 64 × 62 = 6x

⇒ 6(4 + 2) = 6x

⇒ x = 6

If √3n = 729, then the value of n is equal to:

  1. 6
  2. 8
  3. 12
  4. 9

Answer (Detailed Solution Below)

Option 3 : 12

Simplification Question 13 Detailed Solution

Download Soln PDF

Given:

√3n = 729

Formulas used:

(xa)b = xab

If xa = xb then a = b 

Calculation:

√3n = 729

⇒ √3n = (32)3

⇒ (3n)1/2 = (32)3

⇒ (3n)1/2 = 36

⇒ n/2 = 6 

∴  n = 12 

Solve:

(81.84 + 118.16) ÷ 53 = 1.2 × 2 + ?

  1. 0.8
  2. -0.8
  3. 0.6
  4. -0.6

Answer (Detailed Solution Below)

Option 2 : -0.8

Simplification Question 14 Detailed Solution

Download Soln PDF

Given expression,

(81.84 + 118.16) ÷ 53 = 1.2 × 2 + ?

⇒ 200 ÷ 53 = 1.2 × 2 + ?

⇒ 200 ÷ 125 = 1.2 × 2 +?

⇒ 1.6 = 2.4 + ?

⇒ ? = -0.8

Simplify:

\(\sqrt {11 - 2\sqrt {30} }\)

  1. \(\sqrt 6 + \sqrt 5 \)
  2. 6
  3. \(\sqrt 6 - \sqrt 5\)
  4. \(6 - \sqrt 5\)

Answer (Detailed Solution Below)

Option 3 : \(\sqrt 6 - \sqrt 5\)

Simplification Question 15 Detailed Solution

Download Soln PDF
\(\begin{array}{l} \sqrt {11 - 2\sqrt {30} } \\ = \sqrt {\left( {11} \right) - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {\left( {6 + 5} \right) - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {{{\left( {\sqrt 6 } \right)}^2} + {{\left( {\sqrt 5 } \right)}^2} - 2\sqrt 6 \times \sqrt 5 } \\ = \sqrt {{{\left( {\sqrt 6 - \sqrt 5 } \right)}^2}} \\ = \sqrt 6 - \sqrt 5 \end{array}\)
Hot Links: all teen patti teen patti joy apk teen patti 50 bonus