Question
Download Solution PDF\(\rm \left( \frac {2}{x^2} - \sqrt x \right)^{10}\) के द्विपद में x का स्वतंत्र पद किसके बराबर है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
(x + y)n = nΣr=0 nCr xn – r · yr
स्वतंत्र पद में: चरों का घांत शून्य होगा।
गणना:
\(\rm \left( \frac {2}{x^2} - \sqrt x \right)^{10}=\sum 10C_r(\frac{2}{x^2})^{10-r}(-x^{1/2})^r\\ ⇒\sum 10C_r({2}{x^{-2}})^{10-r}(-x^{1/2})^r\\ ⇒\sum 10C_r({2}^{10-r}{x^{-20+2r}})(-x^{\frac{r}{2}})\\ ⇒\sum 10C_r({2}^{10-r}{x^{-20+2r+\frac{r}{2}}})(-1^{\frac{r}{2}})\\ \)
अब, स्वतंत्र पद के लिए, -20 + 2r + r/2 = 0
⇒(4r + r)/2 = 20
⇒ 5r = 40
⇒ r = 8
इसलिए, स्वतंत्र पद =
\(\rm 10 C_r\times2^{10-r}\times (-1)^{r/2}\\ ⇒ 10 C_8\times2^{10-8}\times (-1)^{8/2}\\ ⇒ \frac{10!}{8!2!}\times2^{2}\times 1\\ ⇒\frac{10\times 9}{2}\times 4\\ ⇒180\)
अतः विकल्प (1) सही है।
Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.