Question
Download Solution PDFसबसे छोटा धनात्मक पूर्णांक n क्या है जिसके लिए
\(\rm \left(\frac{1-i}{1+i}\right)^{n^2}=1\)
जहाँ i = √-1?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा:
(i)2 = 1
(-i)4 = 1
गणना:
\(\rm \left(\frac{1-i}{1+i}\right)^{n^2}=1\)
परिमेयीकरण करने पर,
\(\rm \left (\frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i} \right )^{n^{2}}\)= 1
\(\rm \left (\frac{(1 - i)^{2}}{1 - i^{2}} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{1 + i^{2} - 2i}{1 - (-1)} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{1 - 1 - 2i}{1 + 1} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{- 2i}{2} \right )^{n^{2}}\)= 1
\(\rm \left (- i \right )^{n^{2}} \) = 1
अगर हम n = 2 रखते हैं तो
\(\rm \left (- i \right )^{n^{2}} \) = 1
समीकरण को संतुष्ट करता है।
इसलिए, विकल्प 1 सही है।
Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.