एक समीकरण का समतल (1, -1, 2) से होकर गुजरता है और इसका द्विक अनुपात (1, 2, 3) है समीकरण का मान ज्ञात कीजिये। 

This question was previously asked in
AAI ATC Junior Executive 27 July 2022 Shift 2 Official Paper
View all AAI JE ATC Papers >
  1. x + 2y + 3z = 5
  2. x + 3y + 2z = 5
  3. 2x + y + 3z = 5
  4. 3x + 2y + 2z = 5

Answer (Detailed Solution Below)

Option 1 : x + 2y + 3z = 5
Free
AAI ATC JE Physics Mock Test
7.8 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

व्याख्या:

एक समतल सदिश बिंदु  \(\overrightarrow{a}=i-j+2k\) से होकर गुजरता है और इसमें सामान्य सदिश का मान \(\overrightarrow{n}=i+2j+3k\) है। 

इसलिए, समतल का सदिश समीकरण होगा-

\((\overrightarrow{r}-\overrightarrow{a}).\overrightarrow{n}=0\)

⇒ \(\overrightarrow{r}.\overrightarrow{n}=\overrightarrow{a}.\overrightarrow{n}\)

⇒ \(\overrightarrow{r}.(i+2j+3k)=(i-j+2k).(i+2j+3k)\)

माना \(\overrightarrow{r}=xi+yj+zk\)

⇒ \((xi+yj+zk).(i+2j+3k)=(i-j+2k).(i+2j+3k)\)

⇒ x + 2y + 3z = 1 - 2 + 6

⇒ x + 2y + 3z = 5

इसलिए, समतल का कार्तीय समीकरण x + 2y + 3z = 5 है।

Latest AAI JE ATC Updates

Last updated on Jun 19, 2025

-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive.. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.

-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More Equation of a Plane Questions

More Three Dimensional Geometry Questions

Get Free Access Now
Hot Links: teen patti tiger teen patti diya teen patti go teen patti live