Question
Download Solution PDFबिंदु A (1, 0, 2), B (2, 1, 1) और C (-1, 2, 1) से गुजरने वाले समतल का समीकरण ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा :
तीन गैर-संरेखीय बिंदु (x1, y1, z1), (x2, y2, z2) और (x3, y3, z3) के माध्यम से गुजरने वाले कार्टेशियन रूप में समतल का समीकरण निम्न द्वारा दिया गया है:
\(\left| {\begin{array}{*{20}{c}} {x - {x_1}}&{y - {y_1}}&{z - {z_1}}\\ {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}} \end{array}} \right|\; = \;0\)
गणना :
यहां, हमें A (1, 0, 2), B (2, 1, 1) और C (-1, 2, 1) से गुजरने वाले समतल का समीकरण ज्ञात करना होगा।
यहाँ, x1 = 1, y1 = 0, z1 = 2, x2 = 2, y2 = 1, z2 = 1, x3 = - 1, y3 = 2 और z3 = 1।
जैसा कि हम जानते हैं कि तीन गैर-संरेखीय बिंदु (x1, y1, z1), (x2, y2, z2) और (x3, y3, z3) के माध्यम से गुजरने वाले कार्टेशियन रूप में समतल का समीकरण निम्न द्वारा दिया गया है:
\(\left| {\begin{array}{*{20}{c}} {x - {x_1}}&{y - {y_1}}&{z - {z_1}}\\ {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}} \end{array}} \right|\; = \;0\)
⇒\(\left| {\begin{array}{*{20}{c}} {x - {1}}&{y - {0}}&{z - {2}}\\ {1}&{1}&{-1}\\ {-2}&{2}&{-1} \end{array}} \right|\; = \;0\)
⇒ (x - 1) × (-1 + 2) - (y - 0) × (-1 - 2) + (z - 2) × (2 + 2) = 0
⇒ x - 1 + 3y + 4z - 8 = 0
⇒ x + 3y + 4z - 9 = 0
तो, आवश्यक समतल का समीकरण x + 3y + 4z - 9 = 0 है
इसलिए, विकल्प C सही उत्तर है।
Last updated on Jul 8, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.