General Solution of Equation MCQ Quiz in తెలుగు - Objective Question with Answer for General Solution of Equation - ముఫ్త్ [PDF] డౌన్లోడ్ కరెన్
Last updated on Apr 14, 2025
Latest General Solution of Equation MCQ Objective Questions
Top General Solution of Equation MCQ Objective Questions
General Solution of Equation Question 1:
For α, β, γ ≠ 0. If sin-1 α + sin-1 β + sin-1 γ = π and (α + β + γ) (α - γ + β) = 3αβ then γ equal to
Answer (Detailed Solution Below)
General Solution of Equation Question 1 Detailed Solution
Calculation
Given
sin-1 α + sin-1 β + sin-1 γ = π
Let
sin-1 α = A, sin-1 β = B, sin-1 γ = C
⇒ A + B + C = π ⇒ B + C = π - A ⇒ A = π - (B + C)
(α + β + γ) (α - γ + β) = 3αβ
⇒ (α + β)2 - γ2 = 3αβ
⇒ α2 + β2 - γ2 = αβ
⇒ sin2A + sin2B - sin2C = sinA sinB
⇒ sin2A + sin2(B + C) sin2(B - C) = sinA sinB
⇒ sin2A + sin(A) sin(B - C) = sinA sinB
⇒ sinA(sin(A) + sin(B - C)) = sinA sinB
⇒ sinA(sin(B + C) + sin(B - C)) = sinA sinB
⇒ sinA(2sin(B)cos(C) - sinB) = 0
⇒ sinAsinB(2cos(C) - 1 ) = 0
⇒ (2cos(C) - 1 ) = 0 {∵ α, β, γ ≠ 0)
⇒ cosC = \(\frac{1}{2}\)
⇒ sinC =\(\frac{\sqrt{3}}{2}\)
⇒ γ = \(\frac{\sqrt{3}}{2}\)
Hence option 1 is correct
General Solution of Equation Question 2:
Which among the following is/are correct statement(s)?
1. The general value of θ satisfying the equations sin2 θ = sin2 α, cos2 θ = cos2 α and tan2 θ = tan2 α is given by θ = nπ ± α.
2. The general value of θ satisfying the equations sin θ = sin α, cos θ = cos α simultaneously is given by θ = 2nπ ± α, n ∈ Z.
Select the correct answer using the code given below
Answer (Detailed Solution Below)
General Solution of Equation Question 2 Detailed Solution
Concept:
cos 2θ = 1 - 2 sin2 θ
cos 2θ = 2 cos2θ - 1
cos 2θ = \(\rm \frac{1 + tan^{2}θ}{1 - tan^{2}θ}\)
Calculator:
From statement 2
sinθ = sinα
⇒ sinθ - sinα = 0
\(⇒ 2. cos \frac {θ + α}{2}. sin \frac {θ - α}{2} = 0\)
So, either
\(cos \frac {θ + α}{2} = 0\) or \(sin \frac {θ - α}{2} = 0\)
Now from \(cos \frac {θ + α}{2} = 0\)
\( \frac {θ + α}{2} = (2k + 1)\frac {π}{2}, \ k \ ϵ \ integer\)
⇒ θ = (2k + 1)π - α ----(i)
Now from \( \frac {θ - α}{2} = kπ, \ k \ ϵ \ integer\)
⇒ θ = 2kπ + α ----(ii)
Now, On combining equation (i) and (ii), we get
⇒ θ = nπ + (-1)α, where α ϵ integer
So, The general solution of sinθ = sinα is θ = nπ + (-1)α
Hence, Statement 2 is not correct.
Now from statement 1
sin2 θ = sin2 α
⇒ \(\rm \frac{1 - \cos2θ}{2} = \frac{1 - \cos2α}{2}\)
⇒ cos 2θ = cos 2α
⇒ 2θ = 2nπ ± 2α
\(\rm θ = nπ ± α \), n ∈ Z
Similarly for cos2 θ = cos2 α
⇒ \(\rm \frac{\cos2θ + 1}{2} = \frac{\cos2α + 1}{2}\)
⇒ cos 2θ + 1 = cos 2α + 1
⇒ cos 2θ = cos 2α
⇒ \(\rm θ = nπ ± α \), n ∈ Z
tan2 θ = tan2 α
Componendo and dividendo
\(\rm \frac{1 + tan^{2}θ}{1 - tan^{2}θ} = \frac{1 + tan^{2}α}{1 - tan^{2}α} \)
⇒ cos 2θ = cos 2α
So, \(\rm θ = nπ ± α \), n ∈ Z
So, the statement 1 is correct.
∴ Only option (i) is correct.
General Solution of Equation Question 3:
The number of solutions of the equation x3 + 2x2 + 5x + 2cosx = 0 in [0, 2π]
Answer (Detailed Solution Below)
General Solution of Equation Question 3 Detailed Solution
Calculation:
Given, x3 + 2x2 + 5x + 2cosx = 0
⇒ x3 + 2x2 + 5x = - 2cosx
From the graph, we can observe that for x ∈ [0, 2π] the graphs do not intersect.
∴ The number of solutions of the equation x3 + 2x2 + 5x + 2cosx = 0 in [0, 2π] is zero.
The correct answer is Option 4.
General Solution of Equation Question 4:
The equation 3sin2x + 10 cos x – 6 = 0 is satisfied if (n ∈ I)
Answer (Detailed Solution Below)
General Solution of Equation Question 4 Detailed Solution
Concept:
If cos x = cos α, then x = 2nπ ± α, n = 0, ± 1, ± 2, …
Calculation:
Given, 3sin2x + 10cos x - 6 = 0.
⇒ 3(1 - cos2x) + 10cos x - 6 = 0
⇒ 3 - 3cos2x + 10cos x - 6 = 0
⇒ 3cos2x - 10cos x + 3 = 0
⇒ 3cos2x - 9cos x - cos x + 3 = 0
⇒ 3cos x (cos x - 3) - (cos x - 3) = 0
⇒ (cos x - 3)(3cos x - 1) = 0
⇒ cos x = 3 or 3cos x = 1
But cos x = 3 cannot be possible as - 1 ≤ cos x ≤ 1 for all x ∈ R.
∴ 3cos x = 1
⇒ cos x = \(\frac{1}{3}\)
⇒ cos x = cos(cos -1(\(\frac{1}{3}\)))
⇒ x = 2nπ ± cos–1(1/3)
∴ The equation is satisfied for x = x = 2nπ ± cos–1(1/3).
The correct answer is Option 3.
General Solution of Equation Question 5:
If \(\dfrac { 1 }{ 6 } \sin { \theta } ,\cos { \theta } ,\tan { \theta }\) are in G.P. then \(\theta\)
Answer (Detailed Solution Below)
General Solution of Equation Question 5 Detailed Solution
\(ac = b^2\)
Similarly,
\(\tan{\theta} \sin{\theta} \times \dfrac{1}{6} = \cos^2{\theta}\)
\(\Rightarrow \sin^2{\theta} = 6\cos^3{\theta}\)
\(\Rightarrow 6\cos^3{\theta} + \cos^2{\theta} - 1 = 0\)
We get \(\cos{\theta} = \dfrac{1}{2}\) by observation, since its value has to lie between \(0\) and \(1\).
Since \(\cos{\theta} = \dfrac{1}{2}\), the general solution becomes \(2n\pi \pm \dfrac{\pi}{3}\)
General Solution of Equation Question 6:
Let S = {θ ∈ [0, 2π) : tan (π cos θ) + tan (π sin θ) = 0}
Then \(\displaystyle \sum_{θ \in S} \sin ^2\left(θ+\frac{\pi}{4}\right)\) is equal to
Answer (Detailed Solution Below) 2
General Solution of Equation Question 6 Detailed Solution
Concept:
(1) General solution of tanθ = tanα is θ = nπ + α;
α ∈ \(\left[\frac{-π}{2}, \frac{π}{2}\right]\) n ∈ I
(2) Use \(-\sqrt{a^2+b^2}\) ≤ a sin x + b cos x ≤ \(\sqrt{a^2+b^2}\)
Calculation:
Given: S = {θ ∈[0, 2 λ); tan (π cos θ) + tan (π sin θ) = 0}
⇒ tan (π cos θ) = – tan (π sin θ)
⇒ tan (π cos θ) = tan (– π sin θ)
∴ π cos θ = nπ – π sin θ; n ∈ I
⇒ π cos θ + π sin θ = nπ
⇒ cos θ + sin θ = n
Since, \(-\sqrt{2}\) ≤ cos θ + sin θ ≤ \(\sqrt{2}\)
∴ n = –1, 0, 1
Case 1 : If n = –1
cos θ + sin θ = -1
⇒ cos \(\left(θ-\frac{π}{4}\right)\) = \(\rm -\frac{1}{\sqrt2}\)
⇒ cos\(\left(θ-\frac{π}{4}\right)\) = cos\(\left(\frac{3 π}{4}\right)\)
⇒ θ - \(\frac{π}{4}\) = 2kπ ± \(\frac{3 π}{4}\)
⇒ θ = 2k π + π or θ = 2kπ - \(\frac{π}{2}\)
⇒ θ = π, \(\frac{3 π}{2}\)
Case - 2 : If n = 0
cos θ + sin θ = 0
⇒ cos\(\left(θ-\frac{π}{4}\right)\) = 0
⇒ θ - \(\frac{π}{4}\) = 2kπ ± \(\frac{π}{2}\)
⇒ θ = 2kπ + \(\frac{3 π}{4}\) or θ = 2kπ - \(\frac{π}{4}\)
⇒ θ = \(\frac{3 π}{4}\), \(\frac{7 π}{4}\)
Case - 3 : If n = 1
cosθ + sinθ = \(\frac{1}{\sqrt{2}}\)
⇒ cos\(\left(θ-\frac{π}{4}\right)\) = cos\(\left(\frac{π}{4}\right)\)
⇒ θ - \(\frac{π}{4}\) = 2kπ ± \(\frac{π}{4}\)
⇒ θ = 2kπ + \(\frac{π}{2}\) or θ = 2kπ
⇒ θ = \(\frac{π}{2}\), 0
∴ θ = \(\left\{0, \frac{π}{2}, π, \frac{3 π}{2}, \frac{3 π}{4}, \frac{7 π}{4}\right\}\)
So, sin\(\left(θ+\frac{π}{4}\right)\) = \(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\)
Now, \(\sum_{θ ∈ S} \sin ^2\) \(\left(θ+\frac{π}{4}\right)\) = \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) = 2
∴ The value of \(\displaystyle \sum_{θ \in S} \sin ^2\left(θ+\frac{\pi}{4}\right)\) is 2.
General Solution of Equation Question 7:
The general solution of 3 sin2 x - 7 sin x + 2 = 0 is:
Answer (Detailed Solution Below)
General Solution of Equation Question 7 Detailed Solution
Given:
3 sin2 x - 7 sin x + 2 = 0
Concept:
Use concept of general value of sin x
\(x=\rm n\pi+(-1)^n \theta\)
Calculation:
3 sin2 x - 7 sin x + 2 = 0
Put sin x = y
⇒3y2 - 7y + 2 = 0
⇒3y2 - 6y - y + 2 = 0
⇒3y(y - 2) - (y - 2) = 0
⇒(y - 2)(3y - 1) = 0
⇒y = 2 , 1/3
we know that range of sin x is [-1,1] then 2 is not in range than
⇒ sin x = 1/3
⇒ x = sin-1(1/3)
Hence the general value
\(\rm x={n\pi}+(-1)^n\sin^{-1}\frac{1}{3}\)
Hence the option (3) is correct.
General Solution of Equation Question 8:
The general solution of 3 sin2 x - 7 sin x + 2 = 0 is:
Answer (Detailed Solution Below)
General Solution of Equation Question 8 Detailed Solution
Given:
3 sin2 x - 7 sin x + 2 = 0
Concept:
Use concept of general value of sin x
\(x=\rm n\pi+(-1)^n \theta\)
Calculation:
3 sin2 x - 7 sin x + 2 = 0
Put sin x = y
⇒3y2 - 7y + 2 = 0
⇒3y2 - 6y - y + 2 = 0
⇒3y(y - 2) - (y - 2) = 0
⇒(y - 2)(3y - 1) = 0
⇒y = 2 , 1/3
we know that range of sin x is [-1,1] then 2 is not in range than
⇒ sin x = 1/3
⇒ x = sin-1(1/3)
Hence the general value
\(\rm x={n\pi}+(-1)^n\sin^{-1}\frac{1}{3}\)
Hence the option (3) is correct.
General Solution of Equation Question 9:
If α is the root of equation 25 cos2 θ + 5 cos θ - 12 = 0, where \(\pi < \alpha < \frac{{3\pi }}{2}\). Find the value of tan α ?
Answer (Detailed Solution Below)
General Solution of Equation Question 9 Detailed Solution
Concept:
The table below shows the sign of trigonometric functions in different quadrants:
Trigonometric Function |
Quadrant I |
Quadrant II |
Quadrant III |
Quadrant IV |
Sin |
+ |
+ |
- |
- |
Cos |
+ |
- |
- |
+ |
Cosec |
+ |
+ |
- |
- |
Sec |
+ |
- |
- |
+ |
Tan |
+ |
- |
+ |
- |
Cot |
+ |
- |
+ |
- |
Calculation:
Given: α is the root of the equation 25 cos2 θ + 5 cos θ - 12 = 0
∵ α is the root of the equation 25 cos2 θ + 5 cos θ - 12 = 0
⇒ 25 cos2 α + 5 cos α – 12 = 0
Let us suppose 5 cos α = x. So, the given equation 25 cos2 θ + 5 cos θ - 12 = 0 can be written as:
⇒ x2 + x – 12 = 0
⇒ x2 + 4x – 3x – 12 = 0
⇒ (x + 4) (x - 3) = 0
⇒ x = - 4 or x = 3
Now, by substituting the value of 5 cos α = x in the above equation, we get
⇒ cos α = - 4 / 5 or cos α = 3 / 5
\(\because \alpha \in \left( {\pi ,\frac{{3\pi }}{2}} \right) \Rightarrow \cos \alpha = \; - ve\)
Hence, cos α = - 4 / 5
\( \Rightarrow \sin \alpha = \sqrt {1 - {{\left( {-\frac{4}{5}} \right)}^2}} = \; \pm \frac{3}{5}\)
\(\because \alpha \in \;\left( {\pi ,\frac{{3\pi }}{2}} \right) \Rightarrow \sin \alpha = \; - ve\)
Hence, sin α = - 3 / 5
\(\Rightarrow \tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \;\frac{3}{4}\)
General Solution of Equation Question 10:
Find general value of θ when tan θ = tan α
Answer (Detailed Solution Below)
General Solution of Equation Question 10 Detailed Solution
Explanation:
tan θ = tan α
∴ θ = nπ + α