General Solution of Equation MCQ Quiz in தமிழ் - Objective Question with Answer for General Solution of Equation - இலவச PDF ஐப் பதிவிறக்கவும்
Last updated on Mar 19, 2025
Latest General Solution of Equation MCQ Objective Questions
Top General Solution of Equation MCQ Objective Questions
General Solution of Equation Question 1:
For α, β, γ ≠ 0. If sin-1 α + sin-1 β + sin-1 γ = π and (α + β + γ) (α - γ + β) = 3αβ then γ equal to
Answer (Detailed Solution Below)
General Solution of Equation Question 1 Detailed Solution
Calculation
Given
sin-1 α + sin-1 β + sin-1 γ = π
Let
sin-1 α = A, sin-1 β = B, sin-1 γ = C
⇒ A + B + C = π ⇒ B + C = π - A ⇒ A = π - (B + C)
(α + β + γ) (α - γ + β) = 3αβ
⇒ (α + β)2 - γ2 = 3αβ
⇒ α2 + β2 - γ2 = αβ
⇒ sin2A + sin2B - sin2C = sinA sinB
⇒ sin2A + sin2(B + C) sin2(B - C) = sinA sinB
⇒ sin2A + sin(A) sin(B - C) = sinA sinB
⇒ sinA(sin(A) + sin(B - C)) = sinA sinB
⇒ sinA(sin(B + C) + sin(B - C)) = sinA sinB
⇒ sinA(2sin(B)cos(C) - sinB) = 0
⇒ sinAsinB(2cos(C) - 1 ) = 0
⇒ (2cos(C) - 1 ) = 0 {∵ α, β, γ ≠ 0)
⇒ cosC = \(\frac{1}{2}\)
⇒ sinC =\(\frac{\sqrt{3}}{2}\)
⇒ γ = \(\frac{\sqrt{3}}{2}\)
Hence option 1 is correct
General Solution of Equation Question 2:
Which among the following is/are correct statement(s)?
1. The general value of θ satisfying the equations sin2 θ = sin2 α, cos2 θ = cos2 α and tan2 θ = tan2 α is given by θ = nπ ± α.
2. The general value of θ satisfying the equations sin θ = sin α, cos θ = cos α simultaneously is given by θ = 2nπ ± α, n ∈ Z.
Select the correct answer using the code given below
Answer (Detailed Solution Below)
General Solution of Equation Question 2 Detailed Solution
Concept:
cos 2θ = 1 - 2 sin2 θ
cos 2θ = 2 cos2θ - 1
cos 2θ = \(\rm \frac{1 + tan^{2}θ}{1 - tan^{2}θ}\)
Calculator:
From statement 2
sinθ = sinα
⇒ sinθ - sinα = 0
\(⇒ 2. cos \frac {θ + α}{2}. sin \frac {θ - α}{2} = 0\)
So, either
\(cos \frac {θ + α}{2} = 0\) or \(sin \frac {θ - α}{2} = 0\)
Now from \(cos \frac {θ + α}{2} = 0\)
\( \frac {θ + α}{2} = (2k + 1)\frac {π}{2}, \ k \ ϵ \ integer\)
⇒ θ = (2k + 1)π - α ----(i)
Now from \( \frac {θ - α}{2} = kπ, \ k \ ϵ \ integer\)
⇒ θ = 2kπ + α ----(ii)
Now, On combining equation (i) and (ii), we get
⇒ θ = nπ + (-1)α, where α ϵ integer
So, The general solution of sinθ = sinα is θ = nπ + (-1)α
Hence, Statement 2 is not correct.
Now from statement 1
sin2 θ = sin2 α
⇒ \(\rm \frac{1 - \cos2θ}{2} = \frac{1 - \cos2α}{2}\)
⇒ cos 2θ = cos 2α
⇒ 2θ = 2nπ ± 2α
\(\rm θ = nπ ± α \), n ∈ Z
Similarly for cos2 θ = cos2 α
⇒ \(\rm \frac{\cos2θ + 1}{2} = \frac{\cos2α + 1}{2}\)
⇒ cos 2θ + 1 = cos 2α + 1
⇒ cos 2θ = cos 2α
⇒ \(\rm θ = nπ ± α \), n ∈ Z
tan2 θ = tan2 α
Componendo and dividendo
\(\rm \frac{1 + tan^{2}θ}{1 - tan^{2}θ} = \frac{1 + tan^{2}α}{1 - tan^{2}α} \)
⇒ cos 2θ = cos 2α
So, \(\rm θ = nπ ± α \), n ∈ Z
So, the statement 1 is correct.
∴ Only option (i) is correct.
General Solution of Equation Question 3:
The number of solutions of the equation x3 + 2x2 + 5x + 2cosx = 0 in [0, 2π]
Answer (Detailed Solution Below)
General Solution of Equation Question 3 Detailed Solution
Calculation:
Given, x3 + 2x2 + 5x + 2cosx = 0
⇒ x3 + 2x2 + 5x = - 2cosx
From the graph, we can observe that for x ∈ [0, 2π] the graphs do not intersect.
∴ The number of solutions of the equation x3 + 2x2 + 5x + 2cosx = 0 in [0, 2π] is zero.
The correct answer is Option 4.
General Solution of Equation Question 4:
The equation 3sin2x + 10 cos x – 6 = 0 is satisfied if (n ∈ I)
Answer (Detailed Solution Below)
General Solution of Equation Question 4 Detailed Solution
Concept:
If cos x = cos α, then x = 2nπ ± α, n = 0, ± 1, ± 2, …
Calculation:
Given, 3sin2x + 10cos x - 6 = 0.
⇒ 3(1 - cos2x) + 10cos x - 6 = 0
⇒ 3 - 3cos2x + 10cos x - 6 = 0
⇒ 3cos2x - 10cos x + 3 = 0
⇒ 3cos2x - 9cos x - cos x + 3 = 0
⇒ 3cos x (cos x - 3) - (cos x - 3) = 0
⇒ (cos x - 3)(3cos x - 1) = 0
⇒ cos x = 3 or 3cos x = 1
But cos x = 3 cannot be possible as - 1 ≤ cos x ≤ 1 for all x ∈ R.
∴ 3cos x = 1
⇒ cos x = \(\frac{1}{3}\)
⇒ cos x = cos(cos -1(\(\frac{1}{3}\)))
⇒ x = 2nπ ± cos–1(1/3)
∴ The equation is satisfied for x = x = 2nπ ± cos–1(1/3).
The correct answer is Option 3.
General Solution of Equation Question 5:
If \(\dfrac { 1 }{ 6 } \sin { \theta } ,\cos { \theta } ,\tan { \theta }\) are in G.P. then \(\theta\)
Answer (Detailed Solution Below)
General Solution of Equation Question 5 Detailed Solution
\(ac = b^2\)
Similarly,
\(\tan{\theta} \sin{\theta} \times \dfrac{1}{6} = \cos^2{\theta}\)
\(\Rightarrow \sin^2{\theta} = 6\cos^3{\theta}\)
\(\Rightarrow 6\cos^3{\theta} + \cos^2{\theta} - 1 = 0\)
We get \(\cos{\theta} = \dfrac{1}{2}\) by observation, since its value has to lie between \(0\) and \(1\).
Since \(\cos{\theta} = \dfrac{1}{2}\), the general solution becomes \(2n\pi \pm \dfrac{\pi}{3}\)
General Solution of Equation Question 6:
Let S = {θ ∈ [0, 2π) : tan (π cos θ) + tan (π sin θ) = 0}
Then \(\displaystyle \sum_{θ \in S} \sin ^2\left(θ+\frac{\pi}{4}\right)\) is equal to
Answer (Detailed Solution Below) 2
General Solution of Equation Question 6 Detailed Solution
Concept:
(1) General solution of tanθ = tanα is θ = nπ + α;
α ∈ \(\left[\frac{-π}{2}, \frac{π}{2}\right]\) n ∈ I
(2) Use \(-\sqrt{a^2+b^2}\) ≤ a sin x + b cos x ≤ \(\sqrt{a^2+b^2}\)
Calculation:
Given: S = {θ ∈[0, 2 λ); tan (π cos θ) + tan (π sin θ) = 0}
⇒ tan (π cos θ) = – tan (π sin θ)
⇒ tan (π cos θ) = tan (– π sin θ)
∴ π cos θ = nπ – π sin θ; n ∈ I
⇒ π cos θ + π sin θ = nπ
⇒ cos θ + sin θ = n
Since, \(-\sqrt{2}\) ≤ cos θ + sin θ ≤ \(\sqrt{2}\)
∴ n = –1, 0, 1
Case 1 : If n = –1
cos θ + sin θ = -1
⇒ cos \(\left(θ-\frac{π}{4}\right)\) = \(\rm -\frac{1}{\sqrt2}\)
⇒ cos\(\left(θ-\frac{π}{4}\right)\) = cos\(\left(\frac{3 π}{4}\right)\)
⇒ θ - \(\frac{π}{4}\) = 2kπ ± \(\frac{3 π}{4}\)
⇒ θ = 2k π + π or θ = 2kπ - \(\frac{π}{2}\)
⇒ θ = π, \(\frac{3 π}{2}\)
Case - 2 : If n = 0
cos θ + sin θ = 0
⇒ cos\(\left(θ-\frac{π}{4}\right)\) = 0
⇒ θ - \(\frac{π}{4}\) = 2kπ ± \(\frac{π}{2}\)
⇒ θ = 2kπ + \(\frac{3 π}{4}\) or θ = 2kπ - \(\frac{π}{4}\)
⇒ θ = \(\frac{3 π}{4}\), \(\frac{7 π}{4}\)
Case - 3 : If n = 1
cosθ + sinθ = \(\frac{1}{\sqrt{2}}\)
⇒ cos\(\left(θ-\frac{π}{4}\right)\) = cos\(\left(\frac{π}{4}\right)\)
⇒ θ - \(\frac{π}{4}\) = 2kπ ± \(\frac{π}{4}\)
⇒ θ = 2kπ + \(\frac{π}{2}\) or θ = 2kπ
⇒ θ = \(\frac{π}{2}\), 0
∴ θ = \(\left\{0, \frac{π}{2}, π, \frac{3 π}{2}, \frac{3 π}{4}, \frac{7 π}{4}\right\}\)
So, sin\(\left(θ+\frac{π}{4}\right)\) = \(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\)
Now, \(\sum_{θ ∈ S} \sin ^2\) \(\left(θ+\frac{π}{4}\right)\) = \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) = 2
∴ The value of \(\displaystyle \sum_{θ \in S} \sin ^2\left(θ+\frac{\pi}{4}\right)\) is 2.
General Solution of Equation Question 7:
The general solution of 3 sin2 x - 7 sin x + 2 = 0 is:
Answer (Detailed Solution Below)
General Solution of Equation Question 7 Detailed Solution
Given:
3 sin2 x - 7 sin x + 2 = 0
Concept:
Use concept of general value of sin x
\(x=\rm n\pi+(-1)^n \theta\)
Calculation:
3 sin2 x - 7 sin x + 2 = 0
Put sin x = y
⇒3y2 - 7y + 2 = 0
⇒3y2 - 6y - y + 2 = 0
⇒3y(y - 2) - (y - 2) = 0
⇒(y - 2)(3y - 1) = 0
⇒y = 2 , 1/3
we know that range of sin x is [-1,1] then 2 is not in range than
⇒ sin x = 1/3
⇒ x = sin-1(1/3)
Hence the general value
\(\rm x={n\pi}+(-1)^n\sin^{-1}\frac{1}{3}\)
Hence the option (3) is correct.
General Solution of Equation Question 8:
The general solution of 3 sin2 x - 7 sin x + 2 = 0 is:
Answer (Detailed Solution Below)
General Solution of Equation Question 8 Detailed Solution
Given:
3 sin2 x - 7 sin x + 2 = 0
Concept:
Use concept of general value of sin x
\(x=\rm n\pi+(-1)^n \theta\)
Calculation:
3 sin2 x - 7 sin x + 2 = 0
Put sin x = y
⇒3y2 - 7y + 2 = 0
⇒3y2 - 6y - y + 2 = 0
⇒3y(y - 2) - (y - 2) = 0
⇒(y - 2)(3y - 1) = 0
⇒y = 2 , 1/3
we know that range of sin x is [-1,1] then 2 is not in range than
⇒ sin x = 1/3
⇒ x = sin-1(1/3)
Hence the general value
\(\rm x={n\pi}+(-1)^n\sin^{-1}\frac{1}{3}\)
Hence the option (3) is correct.
General Solution of Equation Question 9:
If α is the root of equation 25 cos2 θ + 5 cos θ - 12 = 0, where \(\pi < \alpha < \frac{{3\pi }}{2}\). Find the value of tan α ?
Answer (Detailed Solution Below)
General Solution of Equation Question 9 Detailed Solution
Concept:
The table below shows the sign of trigonometric functions in different quadrants:
Trigonometric Function |
Quadrant I |
Quadrant II |
Quadrant III |
Quadrant IV |
Sin |
+ |
+ |
- |
- |
Cos |
+ |
- |
- |
+ |
Cosec |
+ |
+ |
- |
- |
Sec |
+ |
- |
- |
+ |
Tan |
+ |
- |
+ |
- |
Cot |
+ |
- |
+ |
- |
Calculation:
Given: α is the root of the equation 25 cos2 θ + 5 cos θ - 12 = 0
∵ α is the root of the equation 25 cos2 θ + 5 cos θ - 12 = 0
⇒ 25 cos2 α + 5 cos α – 12 = 0
Let us suppose 5 cos α = x. So, the given equation 25 cos2 θ + 5 cos θ - 12 = 0 can be written as:
⇒ x2 + x – 12 = 0
⇒ x2 + 4x – 3x – 12 = 0
⇒ (x + 4) (x - 3) = 0
⇒ x = - 4 or x = 3
Now, by substituting the value of 5 cos α = x in the above equation, we get
⇒ cos α = - 4 / 5 or cos α = 3 / 5
\(\because \alpha \in \left( {\pi ,\frac{{3\pi }}{2}} \right) \Rightarrow \cos \alpha = \; - ve\)
Hence, cos α = - 4 / 5
\( \Rightarrow \sin \alpha = \sqrt {1 - {{\left( {-\frac{4}{5}} \right)}^2}} = \; \pm \frac{3}{5}\)
\(\because \alpha \in \;\left( {\pi ,\frac{{3\pi }}{2}} \right) \Rightarrow \sin \alpha = \; - ve\)
Hence, sin α = - 3 / 5
\(\Rightarrow \tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \;\frac{3}{4}\)
General Solution of Equation Question 10:
Find general value of θ when tan θ = tan α
Answer (Detailed Solution Below)
General Solution of Equation Question 10 Detailed Solution
Explanation:
tan θ = tan α
∴ θ = nπ + α