Definition of Fourier Transform MCQ Quiz in తెలుగు - Objective Question with Answer for Definition of Fourier Transform - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Apr 18, 2025

పొందండి Definition of Fourier Transform సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Definition of Fourier Transform MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Definition of Fourier Transform MCQ Objective Questions

Top Definition of Fourier Transform MCQ Objective Questions

Definition of Fourier Transform Question 1:

The discrete signal x[n] is shown below

imcorr910

The Fourier transform of the signal in rectangular form is

X(ejω)=P(ejω)+jQ(ejω)

Another signal, Y(ejω)=[Q(ejω)+P(ejω)ejω]

The value of y[n] at n=2 is _________.

Answer (Detailed Solution Below) 0.49 - 0.51

Definition of Fourier Transform Question 1 Detailed Solution

Given, inverse Fourier of X(ejω) is x[n] then,

xe[n]=x[n]+x[n]2FTRe{X(ejω)}=P(ejω)

and, xo[n]=x[n]x[n]2FTjQ(ejω)

Thus, inverse Fourier of Q(ejω) is jxo[n]

And, P(ejω)ejωFT1xe[n1]

Thus, inverse Fourier of Y(ejω),y[n]is y[n]=xe[n1]jxo[n].

we have x[n]={112}

xe[n]={12, 1, 12}xe[n1]={12,1,12}

and, xo[n]={32,0,32}jxo[n]={j32,0,j32}

y[n]={(j32),12,(1j32),12          }

Thus, y[2]=1/2.

Definition of Fourier Transform Question 2:

The value of A=t2(sintπt)4dt is

  1. 1π3
  2. 12π3
  3. 2π3
  4. 3π3

Answer (Detailed Solution Below)

Option 2 : 12π3

Definition of Fourier Transform Question 2 Detailed Solution

We know the Fourier pair,  x(t)=sintπtFTrect(ω2)

Gate EC Signals and systems Live Images-Q6

Now, let y(t)=x2(t)FTY(jω)

Then, y(t)=(sintπt)2FTY(jω)=12π[rect(ω2) rect(ω2)]

Gate EC Signals and systems Live Images-Q6.1

Now, let z(t)=ty(t) then,

t(sintπt)2FTjdY(jω)dω=Z(jω)

Gate EC Signals and systems Live Images-Q6.2

Now, using Parseval’s theorem, we have

|z(t)|2dt=12π|Z(jω)|2dωt2(sintπt)4dt=12π[(12π)2×4]=12π3

Thus, A=12π3.

Definition of Fourier Transform Question 3:

The impulse response h(t) of the system is frequency response H(jω)=2(sin2(3ω))cosωω2h(t)is constant for

  1. 1<t<1
  2. 1<t<2
  3. 2<t<1
  4. 2<t<2

Answer (Detailed Solution Below)

Option 1 : 1<t<1

Definition of Fourier Transform Question 3 Detailed Solution

We have inverse Fourier ofsin(3ω)ω given by,

Gate EC Signal and system Mack Images-Q12

Thus,x1(t)=12[u(t+3)u(t3)]

Using multiplication property we have

x2(t)=x1(t)x1(t)FT12π[X1(jω)X1(jω)]=12πsin2(3ω)ω2

Thus, inverse Fourier of X2(jω)=sin2(3ω)ω2 is

x2(t)=12[u(t+3)u(t3)]12[u(t+3)u(t3)]x2(t)=14[r(t+6)2r(t)+r(t3)]

Now X3(jω)=2sin2(3ω)cosωω2=2[12ejω(sin3ωω)2+12ejω(sin3ωω)2]

x3(t)=x2(t+1)+x2(t1)x3(t)=14[r(t+7)2r(t+1)+r(t5)]+14[r(t+5)2r(t1)+r(t7)]

Gate EC Signal and system Mack Images-Q12.1

Net slope for t(1,1) is (1)+(1)=0

Thus h(t) is constant for 1<t<1.

Definition of Fourier Transform Question 4:

x(t) is a signal with Fourier transform X(jω). x(t)has following properties:

a)  x(t) is real and causal.

b)  12πRe{X(jω)ejωtdω=|t|e|t|}

The value of x(t) at t=1 is __________.

Answer (Detailed Solution Below) 0.70 - 0.74

Definition of Fourier Transform Question 4 Detailed Solution

x(t)+x(t)2X(jω)+X(jω)2

x(t)+x(t)2X(jω)+X(jω)2=Re{X(jω)}         (x(t)=x(t)asx(t) is real)

Even{x(t)}Re{X(jω)}

Thus for a real signal, Fourier transform of even part of time domain signal is the real part of frequency domain signal.

Even{x(t)}=x(t)+x(t)2FTRe{X(jω)}

Now, we are given FT1{Re{X(jω)}}=|t|e|t|

Therefore, Even{x(t)}=x(t)+x(t)2=|t|e|t|

Given, x(t)=0 for t0 (as x(t) is causal)

x(t)=0fort0

Thus, we can write x(t)=2|t|e|t|, t0

x(t)=2|t|e|t|u(t)

x(t)=2tetu(t)

Now, x(t)|t=12.1.e1=2e1=0.735

Definition of Fourier Transform Question 5:

The Fourier transform of 4t(1+t2)2 is X(ω)

Then |X(ω)|ω=0 is________.

Answer (Detailed Solution Below) 0

Definition of Fourier Transform Question 5 Detailed Solution

Let there be function y(t) such that

dy(t)dt=x(t)

And x(t)F.TX(ω)

Let y(t)=2(1+t2)

Then y(ω)=2(1+ω2)

Then inverse Fourier of y(ω) is e|t|(=w(t)let)

Then Fourier transform of y(t) is 2π w(-ω)

Thus, 2πw(ω)=2πe|ω|

Now Fourier transform of dy(t)dt is jω.FT{y(t)}

FT{dy(t)dt}=jω.FT{y(t)}=jω.2πe|ω|FT{x(t)}=j2πω.e|ω|X(ω)=jω2πe|ω|

Now |X(ω)|=ω.2πe|ω|

Thus |X(ω)|ω=0=0

Note we have used the duality property and differentiation in time domain to solve this problem.

Definition of Fourier Transform Question 6:

We have X(jω) given by

|X(jω)|=2[u(ω+3)u(ω3)] and

X(jω)=32ω+π

Where X(jω) is phase of X(jω)

Then the value of x(t) at t=1.5 sec is ________

Answer (Detailed Solution Below) -2 - -1.8

Definition of Fourier Transform Question 6 Detailed Solution

We have X(jω)=2[u(ω+3)u(ω3)]ej(3ω2+π)

X(jω)=2[u(ω+3)u(ω3)]ej3ω2

Let X1(jω)=2[u(ω+3)u(ω3)]

x1(t)=2(sin3tπt)

Now inverse Fourier of X(jω)=X1(jω)ej3ω2 is x1(t32)

Thus,

x(t)=x1(t32)x(t)=2[sin3(t32)π(t32)]

Creating the tum sinθθ we have

Thus x(t)at t=32=6π=1.9098

Definition of Fourier Transform Question 7:

We have two signals x(t) and y(t) given by

EC Signals Subject Test 1 reviewed Images Q19

EC Signals Subject Test 1 reviewed Images Q19.1

Then, X(jω)G(jω) is

  1. 1jω

  2. 1jω(1ωcotω)

  3. jω

  4. 1jω+πδ(ω)

Answer (Detailed Solution Below)

Option 2 :

1jω(1ωcotω)

Definition of Fourier Transform Question 7 Detailed Solution

EC Signals Subject Test 1 reviewed Images Q19.2

EC Signals Subject Test 1 reviewed Images Q19.3

Let s(t)=dx(t)dt=g(t)+f(t)

S(jω)=(2sinωω)ejωejω  ________ (1)

Now

x(t)=t[dx(t)dt]dt=ts(t)dtX(jω)=S(jω)jω+πS(0)δ(ω)

from (1) S(0)=2sinωωejωejω|ω=0=0

X(jω)=S(jω)jω=1jω(G(jω)+F(jω))(s(t)=g(t)+f(t)S(jω)=G(jω)+F(jω))

Now G(jω)=2sinωω and F(jω)=ejωejω=2cosω

Now X(jω)G(jω)=1jω(1+F(jω)G(jω))=1jω(1+2cosω2(sinωω))

X(jω)G(jω)=1jω(1ωcotω)

On another approach we see that three options have 1jω term in them, which prompts that x(t) is integral of g(t) (as people usually forget the impulses) and then when you try, you get X(jω)=G(jω)jω+πG(0)δ(ω) (remember you have missed the impulses) X(jω)G(jω)=1jω+π2δ(ω)2sinωω

(G(0)=2 and G(jω)=2sinωω) and then you realise that no option matches. After this you rethink, and if you can discover that

dx(t)dtg(t) but dx(t)dt=g(t)+f(t)

x(t)=t(g(t)+f(t))dtX(jω)=1jω(G(jω)+F(jω))+π(G(0)+F(0)δ(ω)G(jω)+F(jω)=2sinωωejωejω=2sinωω2cosω

And G(j0)+F(j0)=0

X(jω)G(jω)=1jω(1+F(jω)G(jω))

Here you see that a cotω term comes and you can mark option d without solving further.

Definition of Fourier Transform Question 8:

The Fourier transform of signal 1t2+b2 is

  1. π2eb|ω|

  2. 2beb|ω|

  3. πbeb|ω|

  4. 2beb|ω|

Answer (Detailed Solution Below)

Option 3 :

πbeb|ω|

Definition of Fourier Transform Question 8 Detailed Solution

eb|t|FT2bω2+b2

Using duality, 2bt2+b2FT2πeb|ω|

1t2+b2FTπbeb|ω|

Definition of Fourier Transform Question 9:

The baseband signal x(t)  has a Nyquist rate of ω0 . Then, the Nyquist rate for x(t).[ejω0tx(t)] is _______ times ω0.

Answer (Detailed Solution Below) 2

Definition of Fourier Transform Question 9 Detailed Solution

We have the Nyquist rate for x(t) is ωo.

 Highest frequency component of x(t) is ωo2

1

ejω0tX(t)X(ω+ω0)

2

X(t)[ejω0tX(t)]12π[X(ω)×X(ω+ω0)]

Upper limit of convolution=ω02+ω02=0

Lower limit of convolution ==3ω02+ω02=-2ω0

Convolution of two same duration rectangular is triangular pulse

3

After sampling

41

Shifted sample position occurs at fm ± nfs

For centre frequency -ω0

Shifted is at +ω0

ω0 = -ω0 ± fs

fs = 2ω0

Definition of Fourier Transform Question 10:

The value of t.[sintπtsintπt]is

  1. 12π.sint

  2. 12π.sinc(t)

  3. 1πsint

  4. 1πsinc(t)

Answer (Detailed Solution Below)

Option 3 :

1πsint

Definition of Fourier Transform Question 10 Detailed Solution

Let

EC signal test 2 5

Now,

P(t)P(t)=P(ω).P(ω)

So,

EC signal test 2 6

Now inverse Fourier of X(ω) can be written as sintπtThus,

t[sintπt×sintπt]=t[sintπt]=1πsint

 

Get Free Access Now
Hot Links: teen patti master golden india teen patti master real cash teen patti 51 bonus teen patti palace teen patti master gold download