Definition of Fourier Transform MCQ Quiz - Objective Question with Answer for Definition of Fourier Transform - Download Free PDF

Last updated on Mar 27, 2025

Latest Definition of Fourier Transform MCQ Objective Questions

Definition of Fourier Transform Question 1:

Let x(n)=(12)nu(n), y(n)=x2n and Y(e) to be the Fourier transform of y(n) then Y(ej0)

  1. 14
  2. 2
  3. 4
  4. 43

Answer (Detailed Solution Below)

Option 4 : 43

Definition of Fourier Transform Question 1 Detailed Solution

Concept:

The Fourier transform for a discrete time sequence y[n] is given by:

Y(ejω)=n=y(n)ejωn

Analysis:

x(n)=(12)nu(n)

y(n)=x2(n)=(12)2nu2(n)

=[(12)2]nu2(n)

=(14)nu(n)

The Fourier transform of the above signal will now be:

Y(ejω)=n=0(14)nejωn

Y(ej0)=n=0(14)n

=1+14+(14)2+

=1114=43

Definition of Fourier Transform Question 2:

A real function x(t) has Fourier transfer x(ω). The Fourier transform of [x(t)x(t)] is

  1. Real
  2. Real and odd
  3. Imaginary 
  4. Zero

Answer (Detailed Solution Below)

Option 3 : Imaginary 

Definition of Fourier Transform Question 2 Detailed Solution

By time reversal

x(t)FX(ω)

For real functions X(ω)=X(ω)

x(t)FX(ω)[x(t)x(t)]FX(ω)X(ω)

X(ω) – x*(ω) is complex conjugate subtracted from real function which will be pure imaginary.

Definition of Fourier Transform Question 3:

Consider a signal defined by

x(t)={e j10tfor|t|10for|t|>1

Its Fourier Transform is

  1. 2sin(ω10)ω10
  2. 2ej10sin(ω10)ω10
  3. 2sinωω10
  4. ej10ω2sinωω

Answer (Detailed Solution Below)

Option 1 : 2sin(ω10)ω10

Definition of Fourier Transform Question 3 Detailed Solution

Concept:

The Fourier Transform of a continuous-time signal x(t) is given as:

X(ω)=x(t) ejωt dt

Analysis:

Given:

x(t) = ej10t  defined from t = -1 to 1. 

X(ω)=11ej10t.ejωtdt=11ej(10ω)tdt

X(ω)=ej(10ω)tj(10ω)|11=2sin(ω10)(ω10)

Definition of Fourier Transform Question 4:

The Fourier transform of a signal h(t) is H (jω) = (2 cosω ) (sin2ω) / ω . The value of h(0) is

  1. ¼
  2. ½
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Definition of Fourier Transform Question 4 Detailed Solution

H(jω)=(2cosω)(sin2ω)ω=sin3ωω+sinωω

We know that the inverse Fourier transform of sinc function is a rectangular function.

A rect(tτ)Aτ Sa(ωτ2)

Now,

Sa(ωτ2)=sin (ωτ2)ωτ2

1)

sin 3ωω=3sin (3ω)3ω

By comparing, we get

τ/2=3,Aτ=3

hence, A = 0.5

2) 

sin ωω=1×sin (ω×1)ω×1

By comparing, we get

τ/2=1,Aτ=1

hence, A = 0.5

 

EE Signals and Systems mobile Images-Q51

EE Signals and Systems mobile Images-Q51.1

So, inverse Fourier transform of H (jω)

h(t) = h(t) + h2(t)

h(0) = h1(0) + h2­­(0)

12+12=1

Definition of Fourier Transform Question 5:

The Fourier transform of a real valued time signal has

  1. Odd symmetry

  2. Even symmetry

  3. Conjugate symmetry

  4. No symmetry

Answer (Detailed Solution Below)

Option 3 :

Conjugate symmetry

Definition of Fourier Transform Question 5 Detailed Solution

For a real valued signal x(t)=x(t)

Taking its fourier transform, we have

X(ω)=X(ω)

Thus, Fourier transform of a real valued time signal has conjugate symmetry.

Top Definition of Fourier Transform MCQ Objective Questions

Consider a signal defined by

x(t)={e j10tfor|t|10for|t|>1

Its Fourier Transform is

  1. 2sin(ω10)ω10
  2. 2ej10sin(ω10)ω10
  3. 2sinωω10
  4. ej10ω2sinωω

Answer (Detailed Solution Below)

Option 1 : 2sin(ω10)ω10

Definition of Fourier Transform Question 6 Detailed Solution

Download Solution PDF

Concept:

The Fourier Transform of a continuous-time signal x(t) is given as:

X(ω)=x(t) ejωt dt

Analysis:

Given:

x(t) = ej10t  defined from t = -1 to 1. 

X(ω)=11ej10t.ejωtdt=11ej(10ω)tdt

X(ω)=ej(10ω)tj(10ω)|11=2sin(ω10)(ω10)

The Fourier transform of a signal h(t) is H (jω) = (2 cosω ) (sin2ω) / ω . The value of h(0) is

  1. ¼
  2. ½
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Definition of Fourier Transform Question 7 Detailed Solution

Download Solution PDF

H(jω)=(2cosω)(sin2ω)ω=sin3ωω+sinωω

We know that the inverse Fourier transform of sinc function is a rectangular function.

A rect(tτ)Aτ Sa(ωτ2)

Now,

Sa(ωτ2)=sin (ωτ2)ωτ2

1)

sin 3ωω=3sin (3ω)3ω

By comparing, we get

τ/2=3,Aτ=3

hence, A = 0.5

2) 

sin ωω=1×sin (ω×1)ω×1

By comparing, we get

τ/2=1,Aτ=1

hence, A = 0.5

 

EE Signals and Systems mobile Images-Q51

EE Signals and Systems mobile Images-Q51.1

So, inverse Fourier transform of H (jω)

h(t) = h(t) + h2(t)

h(0) = h1(0) + h2­­(0)

12+12=1

Let x(n)=(12)nu(n), y(n)=x2n and Y(e) to be the Fourier transform of y(n) then Y(ej0)

  1. 14
  2. 2
  3. 4
  4. 43

Answer (Detailed Solution Below)

Option 4 : 43

Definition of Fourier Transform Question 8 Detailed Solution

Download Solution PDF

Concept:

The Fourier transform for a discrete time sequence y[n] is given by:

Y(ejω)=n=y(n)ejωn

Analysis:

x(n)=(12)nu(n)

y(n)=x2(n)=(12)2nu2(n)

=[(12)2]nu2(n)

=(14)nu(n)

The Fourier transform of the above signal will now be:

Y(ejω)=n=0(14)nejωn

Y(ej0)=n=0(14)n

=1+14+(14)2+

=1114=43

Definition of Fourier Transform Question 9:

Consider a signal defined by

x(t)={e j10tfor|t|10for|t|>1

Its Fourier Transform is

  1. 2sin(ω10)ω10
  2. 2ej10sin(ω10)ω10
  3. 2sinωω10
  4. ej10ω2sinωω

Answer (Detailed Solution Below)

Option 1 : 2sin(ω10)ω10

Definition of Fourier Transform Question 9 Detailed Solution

Concept:

The Fourier Transform of a continuous-time signal x(t) is given as:

X(ω)=x(t) ejωt dt

Analysis:

Given:

x(t) = ej10t  defined from t = -1 to 1. 

X(ω)=11ej10t.ejωtdt=11ej(10ω)tdt

X(ω)=ej(10ω)tj(10ω)|11=2sin(ω10)(ω10)

Definition of Fourier Transform Question 10:

The Fourier transform of a signal h(t) is H (jω) = (2 cosω ) (sin2ω) / ω . The value of h(0) is

  1. ¼
  2. ½
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Definition of Fourier Transform Question 10 Detailed Solution

H(jω)=(2cosω)(sin2ω)ω=sin3ωω+sinωω

We know that the inverse Fourier transform of sinc function is a rectangular function.

A rect(tτ)Aτ Sa(ωτ2)

Now,

Sa(ωτ2)=sin (ωτ2)ωτ2

1)

sin 3ωω=3sin (3ω)3ω

By comparing, we get

τ/2=3,Aτ=3

hence, A = 0.5

2) 

sin ωω=1×sin (ω×1)ω×1

By comparing, we get

τ/2=1,Aτ=1

hence, A = 0.5

 

EE Signals and Systems mobile Images-Q51

EE Signals and Systems mobile Images-Q51.1

So, inverse Fourier transform of H (jω)

h(t) = h(t) + h2(t)

h(0) = h1(0) + h2­­(0)

12+12=1

Definition of Fourier Transform Question 11:

The signal x(t) is described by

x(t)={1for1t10otherwise

Two of the non-zero angular frequencies at which its Fourier transform becomes zero are

  1. π, 2π
  2. 0.5 π, 1.5 π
  3. 0, π
  4. 2 π, 2.5 π

Answer (Detailed Solution Below)

Option 1 : π, 2π

Definition of Fourier Transform Question 11 Detailed Solution

x(t)={1for1t10otherwise

Fourier transform:

X(jω)=ejωtx(t)dt

=11ejωt(1)dt

=1jω[ejω]11

X(jω)=1jω(ejωejω)

X(jω) is zero at ω = π and ω = 2π.

Definition of Fourier Transform Question 12:

Let x(n)=(12)nu(n), y(n)=x2n and Y(e) to be the Fourier transform of y(n) then Y(ej0)

  1. 14
  2. 2
  3. 4
  4. 43

Answer (Detailed Solution Below)

Option 4 : 43

Definition of Fourier Transform Question 12 Detailed Solution

Concept:

The Fourier transform for a discrete time sequence y[n] is given by:

Y(ejω)=n=y(n)ejωn

Analysis:

x(n)=(12)nu(n)

y(n)=x2(n)=(12)2nu2(n)

=[(12)2]nu2(n)

=(14)nu(n)

The Fourier transform of the above signal will now be:

Y(ejω)=n=0(14)nejωn

Y(ej0)=n=0(14)n

=1+14+(14)2+

=1114=43

Definition of Fourier Transform Question 13:

A real function x(t) has Fourier transfer x(ω). The Fourier transform of [x(t)x(t)] is

  1. Real
  2. Real and odd
  3. Imaginary 
  4. Zero

Answer (Detailed Solution Below)

Option 3 : Imaginary 

Definition of Fourier Transform Question 13 Detailed Solution

By time reversal

x(t)FX(ω)

For real functions X(ω)=X(ω)

x(t)FX(ω)[x(t)x(t)]FX(ω)X(ω)

X(ω) – x*(ω) is complex conjugate subtracted from real function which will be pure imaginary.

Definition of Fourier Transform Question 14:

The Fourier transform of signal x(t) given below figure is X(ω)

03.08.2018.011

The value of X(jω)ej3ω is _______.

Answer (Detailed Solution Below) -13 - -12

Definition of Fourier Transform Question 14 Detailed Solution

x(t)=12πX(jω)ejωtdω

12πX(jω)ejω(3)dω=x(3)

X(jω)ej3ωdω=2π×(2)

= -4π

≃ -12.56

Definition of Fourier Transform Question 15:

The frequency domain representation of the signal shown below is:

F1 R.D M.P 30.09.19 D 18

  1. 2cos2ω2jω
  2. 2cosωjω
  3. 2sin2ω2jω
  4. 2sinωjω

Answer (Detailed Solution Below)

Option 1 : 2cos2ω2jω

Definition of Fourier Transform Question 15 Detailed Solution

Concept:

Frequency domain representation of the signal is its Fourier transform

F.T[x(t)]+x(t)ejωtdt

Calculation:

The signal x(t) can be mathematically written as:

x(t) = u(t + 2) – 2u(t) +u(t – 2)

Taking the Fourier Transform

X(jω)=201.ejωtdt+02(1)ejωtdt

[ejωtjω]20[ejωtjω]02

1jω[e0ej2ω]+1jω[ej2ωe0]

ej2ω1+ej2ω1jω

2(ej2ω+ej2ω2)1jω

2cos2ω1jω
Get Free Access Now
Hot Links: teen patti real cash 2024 teen patti wealth teen patti rules teen patti joy mod apk teen patti earning app