Rolle's Theorem MCQ Quiz in தமிழ் - Objective Question with Answer for Rolle's Theorem - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Apr 5, 2025

பெறு Rolle's Theorem பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Rolle's Theorem MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Rolle's Theorem MCQ Objective Questions

Top Rolle's Theorem MCQ Objective Questions

Rolle's Theorem Question 1:

If Rolle's theorem holds for the function f(x) = x3 - ax2 + bx - 4, x∈[1, 2] with f′(43) = 0, then ordered pair (a, b) is equal to :

  1. (5, 8)
  2. (5, -8)
  3. (-5, 8)
  4. (-5, -8)

Answer (Detailed Solution Below)

Option 1 : (5, 8)

Rolle's Theorem Question 1 Detailed Solution

f(1) = f(2)

⇒ 1 - a + b + 1 = 8 - 4a + 2b + 1

3a - b = 7      ---(i)

f'(x) = 3x2 - 2ax + b

f(43)=0

3×16983a+b=0

⇒ -8a + 3b = -16      ---(ii)

a = 5, b = 8

Rolle's Theorem Question 2:

If f(x) satisfies the requirements of Rolle’s theorem [1, 2] and f(x) is continuous is [1, 2], then value of 12f(x)dx is:

  1. 1
  2. 2
  3. 0
  4. -1

Answer (Detailed Solution Below)

Option 3 : 0

Rolle's Theorem Question 2 Detailed Solution

Concept:

(i) Rolle's Theorem:

Let f(x) be defined in [a, b] such that 

(i) f(x) is continuous in [a, b]

(ii) f(x) is differentiable in (a, b)

(iii) f(a) = f(b)

then there exists at least one point c ∈ (a, b) such that f'(c) = 0 

(ii) abf(x)dx = f(b) - f(a) 

Here, f(a) is the lower limit value of the integral and f(b) is the upper limit value of the integral.

Calculation:

According to the question we have to find the value of 12f(x)dx

⇒ 12f(x)dx = [f(x)]12 (Integration is the 'inverse' of differentiation)

⇒ 12f(x)dx = f(2) - f(1)

Since , f(x) satisfies the requirements of Rolle’s theorem [1, 2].

Therefore, f(2) = f(1)

⇒ 12f(x)dx = 0

∴  12f(x)dx equal to 0.

Rolle's Theorem Question 3:

The value of 'c' in Rolle's Theorem for the function f(x) = cosx2 on [π, 3π]:

  1. 0
  2. 2π 
  3. π2
  4. 3π2
  5. None of these

Answer (Detailed Solution Below)

Option 2 : 2π 

Rolle's Theorem Question 3 Detailed Solution

Concept:

Rolle's theorem states that if a function f(x) is continuous in the closed interval [a, b] and differentiable on the open interval (a, b) such that f(a) = f(b), then f′(c) = 0 for some c ∈ [a, b].

Calculation:

The given function is f(x) = cosx2 on [π, 3π].

f(π) = cosπ2 = 0 and f(3π) = cos3π2 = 0.

Since, f(π) = f(3π), there must exist a c ∈ [π, 3π] such that f'(c) = 0.

f'(x) = ddx(cosx2)=12(sinx2)

⇒ f'(c) = 12(sinc2) = 0

⇒ sinc2 = 0

⇒ c2 = nπ

⇒ c = 2nπ, where n is an integer.

We want c ∈ [π, 3π], therefore c = .

Rolle's Theorem Question 4:

Find a point on curve of f(x) = x(x - 3)2 when tangent is parallel to equation y = 0 in [0, 3]

  1. (3, 0)
  2. (1, 4)
  3. (-1, 4)
  4. (1, 5)

Answer (Detailed Solution Below)

Option 2 : (1, 4)

Rolle's Theorem Question 4 Detailed Solution

Given:

Y = f(x) = x(x - 3)2 = x3 – 6x2 + 9x ⇒ Polynomial

F(x) is

i) Continuous on [0, 3]

And ii) differentiable on (0, 3)

iii) f(0) = f(3) = 0

Thus, all three conditions of Rolle’s Theorem are satisfied.

By Rolle’s Theorem, C ϵ (0, 3) such that f’(c) = 0

f(C) = C (C - 3)2

f(C) = C [C2 – 6c + 9]

f(C) = C3 – 6c2 + 9C

Differentiating,

f’(C) = 3C2 – 12C + 9 = 0

∴ C = 1, 3

But, C = 3 ∉ (0, 3)

∴ C = 1

If x = C = 1, then y (1) = f (1) = 1 (1 - 3)2 = 4

At a point (x, y) = (1, 4) on given curve, the tangent is parallel to x-axis.

Get Free Access Now
Hot Links: teen patti apk download teen patti baaz teen patti bindaas master teen patti