De Moivre's Theorem MCQ Quiz in தமிழ் - Objective Question with Answer for De Moivre's Theorem - இலவச PDF ஐப் பதிவிறக்கவும்
Last updated on Mar 17, 2025
Latest De Moivre's Theorem MCQ Objective Questions
Top De Moivre's Theorem MCQ Objective Questions
De Moivre's Theorem Question 1:
If \(m, n\) are respectively the least positive and greatest negative integer values of \(k\) such that \(\left(\frac{1 - i}{1 + i}\right)^k = -i, \) then \(m - n =\)
Answer (Detailed Solution Below)
De Moivre's Theorem Question 1 Detailed Solution
Calculation
\(\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{1 - 2i + i^2}{1 - i^2} = \frac{1 - 2i - 1}{1 - (-1)} = \frac{-2i}{2} = -i\)
\((-i)^k = -i\)
\(-i = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\)
Using De Moivre's Theorem:
\((-i)^k = \cos\left(\frac{3k\pi}{2}\right) + i\sin\left(\frac{3k\pi}{2}\right)\)
Comparing with -i, we have:
\(\cos\left(\frac{3k\pi}{2}\right) = 0\) and \(\sin\left(\frac{3k\pi}{2}\right) = -1\)
This implies:
\(\frac{3k\pi}{2} = (2n+1)\pi - \frac{\pi}{2}\)
⇒ \(\frac{3k}{2} = 2n + 1 - \frac{1}{2}\)
⇒ \(\frac{3k}{2} = \frac{4n+1}{2}\)
⇒ \(3k = 4n + 1\)
⇒ \(k = \frac{4n+1}{3}\)
For the least positive integer value of k, let n = 0:
\(k = \frac{1}{3}\)
Let n = 1:
\(k = \frac{5}{3}\)
Let n = 2:
\(k = \frac{9}{3} = 3\)
So, m = 3.
For the greatest negative integer value of k, we can analyze the values of k for negative n.
For n = -1:
\(k = \frac{-3}{3} = -1\)
So, n = -1.
\(m - n = 3 - (-1) = 3 + 1 = 4\)
Hence option 1 is correct
De Moivre's Theorem Question 2:
For z ∈ \(\mathbb{C}\), if (1 + z)n = 1 + nc1z + nc2z2 + .... ncnzn and \(\sum_{r=0}^{100} 100 \mathrm{c}_r(\sin \mathrm{r} x)=\left(2 \cos \frac{x}{2}\right)^{100} \sin k x\), then k =
Answer (Detailed Solution Below)
De Moivre's Theorem Question 2 Detailed Solution
Concept:
Euler's theorem:
eiθ = cosθ + isinθ
De Moivre's Theorem:
(cosθ + isinθ)n = cos(nθ) + isin(nθ)
Calculation:
Given, \((1+z)^n=1+{}^nC_1z+{}^nC_2z^2+\cdots+{}^nC_nz^n=\sum_{r=0}^{n}{}^{n}C_rz^r\)
Putting z = eir, we get:
\((1+e^{ir})^n=1+{}^nC_1e^{ir}+{}^nC_2e^{2ir}+\cdots+{}^nC_ne^{nir}=\sum_{r=0}^{n}{}^{n}C_r(e^{ix})^r\)...(i)
Now \(\sum_{r=0}^{100}{}^{100}C_rz^r(\sin rx)\)
= \(\rm Img[\sum_{r=0}^{100}{}^{100}C_rz^r(e^{ix})^r]\), where Img(z) represents the imaginary part of z
= \(\rm Img[(1+e^{ix})^{100}]\)
= \(\rm Img[(1+\cos x +i\sin x)^{100}]\)
= \(\rm Img\left[\left(2\cos^2\left(\frac{x}{2} \right )+2i\sin\left(\frac{x}{2} \right )\cos\left(\frac{x}{2} \right )\right)^{100}\right]\)
= \(\rm Img\left[\left(2cos\left(\frac{x}{2} \right )\right)^{100}\left(\cos\left(\frac{x}{2} \right )+i\sin\left(\frac{x}{2} \right)\right)^{100}\right]\)
= \(\rm \left(2\cos\left(\frac{x}{2} \right )\right)^{100}Img\left[\cos\left(\frac{100x}{2} \right )+i\sin\left(\frac{100x}{2} \right)\right]\)
= \(\rm \left(2\cos\left(\frac{x}{2} \right )\right)^{100}Img\left[\cos50x+i\sin50x\right]\)
= \(\rm \left(2\cos\left(\frac{x}{2} \right )\right)^{100}\sin50x\) = \(\left(2 \cos \left(\frac{x}{2}\right)\right)^{100} \sin k x\) (given)
Comparing both sides we get, k = 50
∴ The value of k is 50.
De Moivre's Theorem Question 3:
If z = eiθ and \(\dfrac{3 \cos 3 \theta + 2\cos2\theta + 5\cos5\theta}{3 \sin3\theta +2\sin2\theta + 5\sin5\theta}\) = \(\dfrac{{i\sum\limits_{r = 0}^{10} {a_rz^r} }}{{\sum\limits_{r = 0}^{10} {b_rz^r} }}\)
then \(\dfrac{\Bigg({\sum\limits_{r = 0}^{10} {a_r + } \sum\limits_{r = 0}^{10} {b_r} }\Bigg)}{{10}}\)=
Answer (Detailed Solution Below)
De Moivre's Theorem Question 3 Detailed Solution
Concept:
- If \(\rm \frac{a}{b}=\frac{c}{d}\) then by componendo and dividendo rule \(\rm \frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Calculation:
Given z = eiθ and \(\dfrac{3 \cos 3 θ + 2\cos2θ + 5\cos5θ}{3 \sin3θ +2\sin2θ + 5\sin5θ}\) = \(\dfrac{{i\sum\limits_{r = 0}^{10} {a_rz^r} }}{{\sum\limits_{r = 0}^{10} {b_rz^r} }}\)
⇒ \(\dfrac{{\sum\limits_{r = 0}^{10} {a_rz^r} }}{{\sum\limits_{r = 0}^{10} {b_rz^r} }}\) = \(\dfrac{3 \cos 3 θ + 2\cos2θ + 5\cos5θ}{i(3 \sin3θ +2\sin2θ + 5\sin5θ)}\)
We know that if \(\rm \frac{a}{b}=\frac{c}{d}\) then \(\rm \frac{a+b}{a-b}=\frac{c+d}{c-d}\)
⇒ \(\rm\frac{{\sum\limits_{r = 0}^{10} {a_rz^r} }+{\sum\limits_{r = 0}^{10} {b_rz^r} }}{{\sum\limits_{r = 0}^{10} {a_rz^r} }-{\sum\limits_{r = 0}^{10} {b_rz^r} }}\) = \(\rm\frac{(3 \cos 3 θ + 2\cos2θ + 5\cos5θ)+i(3 \sin3θ +2\sin2θ + 5\sin5θ)}{(3 \cos 3 θ + 2\cos2θ + 5\cos5θ)-i(3 \sin3θ +2\sin2θ + 5\sin5θ)}\)
⇒ \(\rm\frac{{\sum\limits_{r = 0}^{10} {a_rz^r} }+{\sum\limits_{r = 0}^{10} {b_rz^r} }}{{\sum\limits_{r = 0}^{10} {a_rz^r} }-{\sum\limits_{r = 0}^{10} {b_rz^r} }}\) = \(\rm\frac{3e^{iθ}+2e^{iθ}+5e^{iθ}}{3e^{-iθ}+2e^{-iθ}+5e^{-iθ}}\) [eiθ = cos θ + i sin θ ]
⇒ \(\rm\frac{{\sum\limits_{r = 0}^{10} {z^r(a_r + b_r)} }}{{\sum\limits_{r = 0}^{10} {z^r(a_r -b_r)} }}\) = \(\rm\frac{3e^{iθ}+2e^{iθ}+5e^{iθ}}{3e^{-iθ}+2e^{-iθ}+5e^{-iθ}}\)
We know zr = eirθ and in the R.H.S the value of r are 2, 3 and 5
∴ a0 + b0 = a1 + b1 = a4 + b4 = a6 + b6 = a7 + b7 = a8 + b8 = a9 + b9 = a10 + b10 = 0
∴ a2 + b2 = 2 and a3 + b3 = 3 and a5 + b5 = 5 .
⇒ \(\frac{\Bigg({\sum\limits_{r = 0}^{10} {a_r + } \sum\limits_{r = 0}^{10} {b_r} }\Bigg)}{{10}}\)= \(\frac{2+3+5}{10}\) = 1
Required value of the expression is 1
De Moivre's Theorem Question 4:
Comprehension:
Direction: If n ϵ Z (the set of integers), then
(cosθ + i sinθ)n = cos nθ + i sin nθ and
(cosθ - i sinθ)n = cos nθ - i sin nθ
If n is a positive integer, then (1 + i)n + (1 - i)n is equal to
Answer (Detailed Solution Below)
De Moivre's Theorem Question 4 Detailed Solution
Calculation:
Given,
\( (1 + i)^n + (1 - i)^n \)
We know from De Moivre's theorem that:
\( (1 + i)^n = (\sqrt{2})^n \left( \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) \)
\( (1 - i)^n = (\sqrt{2})^n \left( \cos \frac{-n\pi}{4} + i \sin \frac{-n\pi}{4} \right) \)
Now, adding both the equations:
\( (1 + i)^n + (1 - i)^n = (\sqrt{2})^n \left( \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) + (\sqrt{2})^n \left( \cos \frac{-n\pi}{4} + i \sin \frac{-n\pi}{4} \right) \)
Simplifying, the imaginary parts cancel each other, and we are left with:
\( (1 + i)^n + (1 - i)^n = (\sqrt{2})^{n+2} \cos \frac{n\pi}{4} \)
Hence, the correct answer is Option 3.
De Moivre's Theorem Question 5:
Comprehension:
Direction: If n ϵ Z (the set of integers), then
(cosθ + i sinθ)n = cos nθ + i sin nθ and
(cosθ - i sinθ)n = cos nθ - i sin nθ
If x + \(\frac{1}{x}\) = 2 cos θ, then xn + \(\frac{1}{x^n}\) is equal to
Answer (Detailed Solution Below)
De Moivre's Theorem Question 5 Detailed Solution
Calculation:
Given,
\( x + \frac{1}{x} = 2 \cos \theta \)
We know that:
\( x^2 + 2x \cos \theta + 1 = 0 \)
Rearranging the terms, we get:
\( x = \cos \theta + i \sin \theta \)
Then, the value of \(x^n + \frac{1}{x^n} \) is:
\( x^n = (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \)
\( \frac{1}{x^n} = \cos n\theta - i \sin n\theta \)
Thus,
\( x^n + \frac{1}{x^n} = 2 \cos n \theta \)
Hence, the correct answer is Option 1
De Moivre's Theorem Question 6:
Comprehension:
Direction: If n ϵ Z (the set of integers), then
(cosθ + i sinθ)n = cos nθ + i sin nθ and
(cosθ - i sinθ)n = cos nθ - i sin nθ
If \(\left(\frac{1 \ + \ cos \phi \ + \ i \ sin \phi}{1 \ + \ cos \phi \ - \ i \ sin \phi}\right)^n\) = u + iv, where u and v all real numbers, then u is
Answer (Detailed Solution Below)
De Moivre's Theorem Question 6 Detailed Solution
Calculation:
Given,
\( \frac{1 + \cos \phi + i \sin \phi}{1 + \cos \phi - i \sin \phi} \)
We need to simplify this expression:
\( \frac{1 + \cos \phi + i \sin \phi}{1 + \cos \phi - i \sin \phi} \times \frac{1 + \cos \phi + i \sin \phi}{1 + \cos \phi + i \sin \phi} = \frac{(1 + \cos \phi)^2 + \sin^2 \phi + 2i(1 + \cos \phi) \sin \phi}{(1 + \cos \phi)^2 + \sin^2 \phi} \)
By simplifying the denominator:
\( (1 + \cos \phi)^2 + \sin^2 \phi = 2(1 + \cos \phi) = 2A \)
Now, the numerator becomes:
\( 2A \cos \phi + 2i A \sin \phi \)
Thus the expression simplifies to:
\( \frac{A \cos \phi + i A \sin \phi}{A} = e^{i \phi} \)
Now, we raise this expression to the power \(n\):
\( e^{i \phi} \)
By using De Moivre's Theorem:
\( (e^{i \phi})^n = e^{in \phi} = \cos(n \phi) + i \sin(n \phi) \)
Thus, the real part\(u = \cos(n \phi) \)
Hence, the correct answer is Option (b).