Trigonometry MCQ Quiz - Objective Question with Answer for Trigonometry - Download Free PDF

Last updated on Jul 11, 2025

Trigonometry is the foundation of geometric mathematics and studies the relations between the angles and sides of a triangle. Trigonometry has very advanced applications hence it is one of the crucial topics in various entrance exams such as Railway Exams, Banking, State CET, etc. Testbook presents some trigonometric questions accompanied by solutions and explanations.Trigonometric objectives come with derived formulas and shortcuts in solving problems. Read this article and solve the questions to test yourself.

Latest Trigonometry MCQ Objective Questions

Trigonometry Question 1:

Find the angle of elevation of the top of a 250√3 m high tower, from a point which is 250 m away from its foot.

  1. 75°
  2. 30°
  3. 45°
  4. 60°

Answer (Detailed Solution Below)

Option 4 : 60°

Trigonometry Question 1 Detailed Solution

Given:

Height of the tower (h) = 250 m

Distance of the point from the foot of the tower (b) = 250 m

Formula used:

In a right-angled triangle, tan =

Here, Opposite side = Height of the tower

Adjacent side = Distance from the foot of the tower

Calculations:

Let be the angle of elevation.

tan =

tan =

⇒ tan =

We know that tan(60°) =

= 60°

∴ The angle of elevation is 60°.

Trigonometry Question 2:

If  , then evaluate 

Answer (Detailed Solution Below)

Option 1 :

Trigonometry Question 2 Detailed Solution

<p><strong>Given:</strong></p><p><amp-mathml inline data-formula="\(\tan\theta = \frac{7}{8}\)"></amp-mathml></p><p>Expression to evaluate: <amp-mathml inline data-formula="\(\dfrac{(1 + \sin\theta)(1 - \sin\theta)}{(1 + \cos\theta)(1 - \cos\theta)(\cot\theta)}\)"></amp-mathml></p><p><strong>Formula used:</strong></p><p>1. (a + b)(a - b) = a<sup>2</sup> - b<sup>2</sup></p><p>2. <amp-mathml inline data-formula="\(\sin^2\theta + \cos^2\theta = 1\)"></amp-mathml></p><p>⇒ <amp-mathml inline data-formula="\(1 - \sin^2\theta = \cos^2\theta\)"></amp-mathml></p><p>⇒ <amp-mathml inline data-formula="\(1 - \cos^2\theta = \sin^2\theta\)"></amp-mathml></p><p>3. <amp-mathml inline data-formula="\(\cot\theta = \dfrac{\cos\theta}{\sin\theta}\)"></amp-mathml></p><p>4. <amp-mathml inline data-formula="\(\cot\theta = \dfrac{1}{\tan\theta}\)"></amp-mathml></p><p><strong>Calculations:</strong></p><p>Simplify the numerator:</p><p>Numerator = <amp-mathml inline data-formula="\((1 + \sin\theta)(1 - \sin\theta)\)"></amp-mathml></p><p>⇒ Numerator = <amp-mathml inline data-formula="\(1^2 - \sin^2\theta\)"></amp-mathml></p><p>⇒ Numerator = <amp-mathml inline data-formula="\(1 - \sin^2\theta\)"></amp-mathml></p><p>⇒ Numerator = <amp-mathml inline data-formula="\(\cos^2\theta\)"></amp-mathml></p><p>Simplify the denominator:</p><p>Denominator = <amp-mathml inline data-formula="\((1 + \cos\theta)(1 - \cos\theta)(\cot\theta)\)"></amp-mathml></p><p>⇒ Denominator = <amp-mathml inline data-formula="\((1^2 - \cos^2\theta)(\cot\theta)\)"></amp-mathml></p><p>⇒ Denominator = <amp-mathml inline data-formula="\((1 - \cos^2\theta)(\cot\theta)\)"></amp-mathml></p><p>⇒ Denominator = <amp-mathml inline data-formula="\(\sin^2\theta \times \cot\theta\)"></amp-mathml></p><p>Substitute <amp-mathml inline data-formula="\(\cot\theta = \dfrac{\cos\theta}{\sin\theta}\)"></amp-mathml>:</p><p>⇒ Denominator = <amp-mathml inline data-formula="\(\sin^2\theta \times \dfrac{\cos\theta}{\sin\theta}\)"></amp-mathml></p><p>⇒ Denominator = <amp-mathml inline data-formula="\(\sin\theta \cos\theta\)"></amp-mathml></p><p>Now, substitute the simplified numerator and denominator into the expression:</p><p>Expression = <amp-mathml inline data-formula="\(\dfrac{\cos^2\theta}{\sin\theta \cos\theta}\)"></amp-mathml></p><p>Cancel out  <amp-mathml inline data-formula="\(\cos\theta\)"></amp-mathml> from numerator and denominator:</p><p>⇒ Expression = <amp-mathml inline data-formula="\(\dfrac{\cos\theta}{\sin\theta}\)"></amp-mathml></p><p>⇒ Expression = <amp-mathml inline data-formula="\(\cot\theta\)"></amp-mathml></p><p>Given <amp-mathml inline data-formula="\(\tan\theta = \dfrac{7}{8}\)"></amp-mathml>.</p><p>Since <amp-mathml inline data-formula="\(\cot\theta = \dfrac{1}{\tan\theta}\)"></amp-mathml>:</p><p>⇒ Expression = <amp-mathml inline data-formula="\(\dfrac{1}{\frac{7}{8}}\)"></amp-mathml></p><p>⇒ Expression = <amp-mathml inline data-formula="\(\dfrac{8}{7}\)"></amp-mathml></p><p><strong>∴ The value of the expression is <amp-mathml inline data-formula="\(\dfrac{8}{7}\)"></amp-mathml>.</strong></p> - guacandrollcantina.com

Trigonometry Question 3:

The length of a vertical rod and its shadow are in the ratio of 2 : √12. Find the angle of elevation of the sun.

  1. 30° 
  2. 75°
  3. 45°
  4. 60°

Answer (Detailed Solution Below)

Option 1 : 30° 

Trigonometry Question 3 Detailed Solution

Given:

Length of rod : Length of shadow = 2 : √12

Formula used:

tan θ = Height of rod ÷ Length of shadow

Calculations:

⇒ tan θ = 2 ÷ √12

⇒ tan θ = 2 ÷ 2√3 = 1 ÷ √3

⇒ θ = 30°

∴ The angle of elevation of the sun is 30°.

Trigonometry Question 4:

The angle of elevation of the top of a tower from a point on the ground, which is 48m away from the foot of the tower is 30°. Find the height of the tower.

  1.  m
  2.  m
  3.  m
  4.  m

Answer (Detailed Solution Below)

Option 3 :  m

Trigonometry Question 4 Detailed Solution

Given:

Horizontal distance = 48 m; angle elevation =

Formula used:

Calculations:

⇒ h =  = 16√3

∴ Height of the tower 16√3 m.

Trigonometry Question 5:

A ladder leaning against a wall makes an angle θ with the horizontal ground such that tan θ = . If the height of the top of the ladder from the wall is 30 m, find the distance (in m) of the foot of the ladder from the wall.

  1. 16
  2. 14
  3. 20
  4. 18

Answer (Detailed Solution Below)

Option 1 : 16

Trigonometry Question 5 Detailed Solution

Given:

tan

Height of ladder from ground (opposite side) = 30 m

Formula used:

tan

Calculation:

tan 

 

⇒ Base = m

∴ The correct answer is meters.

Top Trigonometry MCQ Objective Questions

A tree breaks due to storm and the broken part bends, so that the top of the tree touches the ground making an angle of 30° with the ground. The distance between the foot of the tree to the point where the top touches the ground is 18 m. Find the height of the tree (in metres)

  1. 24√3
  2. 9
  3. 9√3
  4. 18√3

Answer (Detailed Solution Below)

Option 4 : 18√3

Trigonometry Question 6 Detailed Solution

Download Solution PDF

GIVEN:

BC = 18 m

CONCEPT:

FORMULAE USED:

Tanθ = Perpendicular/Base

Cosθ = Base/Hypotenuse

CALCULATION:

Height of the tree = AB + AC

Tan 30° = AB/18

⇒ (1/√3) = AB/18

⇒ AB = (18/√3)

Cos 30° = BC/AC = 18/AC

⇒ √3/2 = 18/AC

⇒ AC = 36/√3

Hence, AB + AC = 18/√3 + 36/√3 = 54 / √3

⇒ 54/√3 × √3 /√3  (rationalizing to remove root from denominator)

⇒ 54√3 / 3 = 18√3

∴ Height of the tree = 18√3.

Mistake Point: Here, total height of tree is (AB + AC).

The above Question is previous year Question taken directly from NCERT class 10th. Correct answer will be 18√3

An aeroplane is flying at 1 PM with height of 20 m from a point on the ground. Determine the angle of elevation of aeroplane from other point 20√3 m away from the point exact below of the aero plane on the ground.

  1. 30°
  2. 60°
  3. 90°
  4. 45°

Answer (Detailed Solution Below)

Option 1 : 30°

Trigonometry Question 7 Detailed Solution

Download Solution PDF

We can find the angle of elevation by using the following steps:

Calculation:

Label the height difference between the two points on the ground as "h" and the horizontal distance between the two points as "d".

Use the tangent function to find the angle of elevation:

tan(θ) = .

Solve for the angle of elevation:

In this case, h = 20 m and d = 20√3 m, so:


θ = 30°

So the angle of elevation is 30°.

If tan 53° = 4/3, then, what is the value of tan8°?

  1. 1/6
  2. 1/8
  3. 1/7
  4. 1/5

Answer (Detailed Solution Below)

Option 3 : 1/7

Trigonometry Question 8 Detailed Solution

Download Solution PDF

Given:

tan 53° = 4/3

Formula Used:

tan(x – y) = (tanx – tany)/(1 + tanxtany)

Calculation:

We know, 8° = 53° - 45°

Tan8° = tan(53° - 45°)

⇒ tan8° = (tan53° - tan45°)/(1 + tan53° tan45°)

⇒ tan8° = (4/3 – 1)/(1 + 4/3 × 1)

⇒ tan8° = (1/3)/(7/3)

⇒ tan8° = 1/7

If sec2θ + tan2θ = 5/3, then what is the value of tan2θ?

  1. 2√3
  2. √3
  3. 1/√3
  4. Cannot be determined

Answer (Detailed Solution Below)

Option 2 : √3

Trigonometry Question 9 Detailed Solution

Download Solution PDF

Concept used: 

sec2(x) = 1 + tan2(x)

Calculation:

⇒ sec2θ + tan2θ = 5/3

⇒ 1 + tan2θ + tan2θ = 5/3

⇒ 2tan2θ = 2/3

⇒ tanθ = 1/√3

⇒ θ = 30

∴ tan(2θ) = tan(60) = √3

If the value of tanθ + cotθ = √3, then find the value of tan6θ + cot6θ.

  1. -2
  2. -1
  3. -3
  4. -4

Answer (Detailed Solution Below)

Option 1 : -2

Trigonometry Question 10 Detailed Solution

Download Solution PDF

Given:

tanθ + cotθ = √3

Formula used:

(a + b)= a3 + b3 + 3ab(a + b)

a2 + b2 = (a + b)2 - 2(a × b)

tanθ × cotθ = 1

Calculation:

tanθ + cotθ = √3

Taking cube on both sides, we get

(tanθ + cotθ)3 = (√3)3

⇒ tan3θ + cot3θ + 3 × tanθ × cotθ × (tanθ + cotθ) = 3√3

⇒ tan3θ + cot3θ + 3√3  = 3√3

⇒ tan3θ + cot3θ = 0  

Taking square on the both sides

(tan3θ + cot3θ)2 = 0

⇒ tan6θ + cot6θ + 2 × tan3θ × cot3θ = 0

⇒ tan6θ + cot6θ + 2 = 0    

⇒ tan6θ + cot6θ = - 2

∴ The value of tan6θ + cot6θ is - 2.

If sec4θ – sec2θ = 3 then the value of tan4θ + tan2θ is:

  1. 8
  2. 4
  3. 6
  4. 3

Answer (Detailed Solution Below)

Option 4 : 3

Trigonometry Question 11 Detailed Solution

Download Solution PDF

As,

⇒ sec2θ = 1 + tan2θ

We have,

⇒ (sec2θ)2 – sec2θ = 3

⇒ (1 + tan2θ)2 – (1 + tan2θ) = 3

⇒ (1 + tan4θ + 2tan2θ) – (1 + tan2θ) = 3

⇒ 1 + tan4θ + 2tan2θ – 1 – tan2θ = 3

⇒ tan4θ + tan2θ = 3

(cos2Ø + 1/cosec2Ø) + 17 = x. What is the value of x2?

  1. 18
  2. 324
  3. 256
  4. 16

Answer (Detailed Solution Below)

Option 2 : 324

Trigonometry Question 12 Detailed Solution

Download Solution PDF

Formula Used:

1/Cosec Ø = Sin Ø 

Sin2Ø + Cos2Ø = 1

Calculation:

Cos2Ø + 1/Cosec2Ø + 17 = x

⇒ Cos2Ø + Sin2Ø + 17 = x

⇒ 1 + 17 = x

⇒ x = 18

⇒ x2 = 324

∴ The value of x2 is 324.

A woman is standing 30 m away from her house. An angle of elevation from the top of her is 30° towards the top of house and angle of elevation from her foot is 60° towards the top of the house. Find the total height of the house and woman.

  1. 20 m
  2. 50√3 m
  3. 20√3 m
  4. 10√3 m

Answer (Detailed Solution Below)

Option 2 : 50√3 m

Trigonometry Question 13 Detailed Solution

Download Solution PDF

Given:

A woman is standing 30 m away from her house. An angle of elevation from the top of her is 30° towards the top of house and angle of elevation from her foot is 60° towards the top of the house

Calculation:

In ΔABC,

⇒ tan30° = AB/BC

⇒ 1/√3 = AB/30 

⇒ AB = 30/√3

⇒ AB = 30√3/(√3 × √3) 

⇒ AB = 10√3 m

In ΔAED,

⇒ tan60° = AE/ED

⇒ √3 = (AB + BE)/30

⇒ AB + BE = 30√3

⇒ BE = 30√3 – 10√3

⇒ BE = 20√3 m

Total height of the house = 10√3 + 20√3 = 30√3

Height of the women = CD = BE = 20√3

Total height of the house and women = 30√3 + 20√3 = 50√3

∴ Total height of the house and women is 50√3 

If sec θ - cos θ = 14 and 14 sec θ = x, then the value of x is _________.

  1. tan2 θ
  2. sec2 θ
  3. 2sec θ
  4. 2tan θ

Answer (Detailed Solution Below)

Option 1 : tan2 θ

Trigonometry Question 14 Detailed Solution

Download Solution PDF

Given:

secθ - cosθ = 14 and 14 secθ = x

Concept used:

Calculations:

According to the question,

⇒ 

 

 

       ----()

∴ The value of x is .

Answer (Detailed Solution Below)

Option 3 : 3

Trigonometry Question 15 Detailed Solution

Download Solution PDF

Given:

The given expression = 

Formula used:

cos 67° = sin (90° - 67°) = sin 23°

sin 67° = cos (90° - 67°) = cos 23°

sin2 θ + cos2 θ = 1

sec2 θ - tan2 θ = 1

Calculation:

= sin2 23° + 1 + cos2 23° + 1

= 1 + 1 + 1

= 3

∴ The value of the given expression is 3

Hot Links: teen patti go lotus teen patti teen patti gold apk download teen patti master list teen patti bindaas