Trigonometric Identities MCQ Quiz - Objective Question with Answer for Trigonometric Identities - Download Free PDF
Last updated on Apr 22, 2025
Latest Trigonometric Identities MCQ Objective Questions
Trigonometric Identities Question 1:
If 3sin θ + 5cos θ = 5, then the value of 5sin θ - 3cos θ is equal to:
Answer (Detailed Solution Below)
Trigonometric Identities Question 1 Detailed Solution
Given:
3sin θ + 5cos θ = 5
Concept:
sin2 θ + cos2 θ = 1
a2 + b2 + 2ab = (a + b)2
a2 + b2 - 2ab = (a - b)2
Calculation:
Let 5sin θ - 3cos θ = x ....(1)
And,
3sin θ + 5cos θ = 5 ....(2)
Squaring in both the equation:
9sin2 θ + 25cos2 θ + 30sin θ. cos θ= 25 ....(3)
25sin2 θ + 9cos2 θ - 30sin θ. cos θ = x2 .....(4)
From equation (3) and equation (4)
⇒ 34 (sin2 θ + cos2 θ) = 25 + x2
⇒ 9 = x2
x = 3 and -3
∴ 5sin θ - 3cos θ = 3
The correct option is 1 i.e. 3Trigonometric Identities Question 2:
Direction: Let cos α and cos β be the roots of the equation 8x2 - 2x - 1 = 0.
The value of \(\rm cos\frac{\alpha}{2}\cdot cos \frac{\beta}{2}\) is
Answer (Detailed Solution Below)
Trigonometric Identities Question 2 Detailed Solution
Concept:
\(sin\frac{x}{2}\) = \(\sqrt{{\frac{1-cosx}{2}}} \)
\(cos\frac{x}{2}\) = \(\sqrt{{\frac{1+cosx}{2}}} \)
Calculation:
Given:
cos α and cos β are the roots of the equation 8x2 - 2x - 1 = 0
8x2 - 2x - 1 = 0
⇒ 8x2 - 4x + 2x - 1 = 0
⇒ 4x (2x - 1) + (2x - 1) = 0
⇒ (4x + 1) (2x - 1) = 0
⇒ x = \(-\frac{1}{4}\) and x = \(\frac{1}{2}\)
Since cos α and cos β are the roots of the equation,
∴ cos α = \(-\frac{1}{4}\) and cos β = \(\frac{1}{2}\)
⇒ \(cos\frac{α}{2}\) = \(\sqrt{{\frac{1+cosα}{2}}} \)
⇒ \(cos\frac{α}{2}=\sqrt{{\frac{1-\frac{1}{4}}{2}}} \)
⇒ \(cos\frac{α}{2}=\sqrt\frac{3}{8}=\frac{\sqrt3}{2\sqrt2}\) ------(1)
and \(cos\frac{β}{2}\) = \(\sqrt{{\frac{1+cosβ}{2}}} \)
⇒ \(cos\frac{β}{2}\) = \(\sqrt{{\frac{1+\frac{1}{2}}{2}}} \)
⇒ \(cos\frac{β}{2}\) = \(\frac{\sqrt3}{2} \) ------(2)
Multiplying equations (1) and (2), we get
\(cos\frac{α}{2}cos\frac{β}{2}=\frac{3}{4\sqrt2}\)
∴ the value of \(cos\frac{α}{2}cos\frac{β}{2}=\frac{3}{4\sqrt2}\)
Trigonometric Identities Question 3:
If A, B, C, D are the angles of a cyclic quadrilateral taken in order, then consider the following statements
1. cos A + cos B = -(cos C + cos D)
2. cos (π + A) + cos (π - B) + cos (π - C) - sin \(\rm \left(\frac{\pi}{2}-D\right) = 0 \)
Which of the above statements is/are correct.
Answer (Detailed Solution Below)
Trigonometric Identities Question 3 Detailed Solution
Concept:
The opposite angles of the cyclic quadrilateral are supplementary.
\(\rm \angle A + \angle C = 180^{∘}\)
\(\rm \angle B + \angle D = 180^{∘}\)
cos(180∘ - θ) = - cos θ
cos(180∘ + θ) = - cos θ
sin(90° - θ) = cosθ
Calculator:
Statement 1
L.H.S
cos A + cos B
⇒ cos (180∘ - C) + cos (180∘ - D)
⇒ - cos C - cos D
⇒ - (cos C + cos D) = R.H.S
Statement 2
L.H.S
cos (π + A) + cos (π - B) + cos (π - C) - sin \(\rm \left(\frac{\pi}{2}-D\right) \)
⇒ - cos A - cos B - cos C - cos D
⇒ - cos (180∘ - C) - cos (180∘ - D) - cos C - cos D
⇒ cos C + cos D - cos C - cos D
⇒ 0 = R.H.S
∴ Both the statements are correct.
Trigonometric Identities Question 4:
For what value of θ (in degrees) is the following equation true?
sin 3θ cosθ - cos 3θ sinθ = \(\frac{1}{2}\), 0 < θ < \(\frac{\pi}{2}\)
Answer (Detailed Solution Below)
Trigonometric Identities Question 4 Detailed Solution
Given:
sin 3θ cosθ - cos 3θ sinθ = \(\frac{1}{2}\), 0 < θ < \(\frac{\pi}{2}\)
Formula used:
sin A cosB - cos A sinB = sin(A - B)
Calculation:
Using formula, sin 3θ cosθ - cos 3θ sinθ = sin(3θ - θ) = sin(2θ)
⇒ sin(2θ) = 1/2
⇒ sin(2θ) = 1/2 =sin 30° [∵ 0 < θ < \(\frac{\pi}{2}\)]
⇒ 2θ = 30°
⇒ θ = 15°
Trigonometric Identities Question 5:
If (1 + tan θ) (1 + tan 9θ) = 2, then what is the value of tan(10θ)?
Answer (Detailed Solution Below)
Trigonometric Identities Question 5 Detailed Solution
Concept:
If A + B = 45° then
(1 + tan A)(1 + tan B) = 2
Calculation:
Given that,
(1 + tan θ) (1 + tan 9θ) = 2
We know that, if A + B = 45° then
(1 + tan A)(1 + tan B) = 2
⇒ θ + 9θ = π/4
⇒ 10θ = π/4
Hence, the required value
tan 10θ = tan(π/4)
∴ tan 10θ = 1
Additional Information
∵ tan (A + B) = tan 45° = (tan A + tan B) / (1 – tan A tan B)
⇒ 1 – tan A tanB = tan A + tan B
⇒ 1 + 1 = 1 + tan A + tan B + tan A tan B
⇒ (1 + tan A) (1 + tan B) = 2
Top Trigonometric Identities MCQ Objective Questions
If p = cosec θ – cot θ and q = (cosec θ + cot θ)-1 then which one of the following is correct?
Answer (Detailed Solution Below)
Trigonometric Identities Question 6 Detailed Solution
Download Solution PDFConcept:
cosec2 x – cot2 x = 1
Calculation:
Given: p = cosec θ – cot θ and q = (cosec θ + cot θ)-1
⇒ cosec θ + cot θ = 1/q
As we know that, cosec2 x – cot2 x = 1
⇒ (cosec θ + cot θ) × (cosec θ – cot θ) = 1
\(\frac1q \times p=1\)
⇒ p = qIf sin θ + cos θ = 7/5, then sinθ cosθ is?
Answer (Detailed Solution Below)
Trigonometric Identities Question 7 Detailed Solution
Download Solution PDFConcept:
sin2 x + cos2 x = 1
Calculation:
Given: sin θ + cos θ = 7/5
By, squaring both sides of the above equation we get,
⇒ (sin θ + cos θ)2 = 49/25
⇒ sin2 θ + cos2 θ + 2sin θ.cos θ = 49/25
As we know that, sin2 x + cos2 x = 1
⇒ 1 + 2sin θcos θ = 49/25
⇒ 2sin θcos θ = 24/25
∴ sin θcos θ = 12/25If tan θ + sec θ = 4, then find the value of cos θ ?
Answer (Detailed Solution Below)
Trigonometric Identities Question 8 Detailed Solution
Download Solution PDFConcept:
I. sec2 θ – tan2 θ = 1
II. a2 – b2 = (a - b) (a + b)
Calculation:
Given:
tan θ + sec θ = 4 ...(1)
As we know that, sec2 θ – tan2 θ = 1
⇒ sec2 θ – tan2 θ = 1
⇒ (sec θ – tan θ) (sec θ + tan θ) = 1
By substituting the value of tan θ + sec θ = 4, in the above equation, we get
⇒ sec θ – tan θ = 1/4 ... (2)
Adding equation (1) and (2), we get
⇒ 2 sec θ = 17/4
⇒ sec θ = 17/8
cos θ = 8/17
Mistake PointsIt is tan θ which is equal to 15/8. The above two equations that we solved were:
tan θ + sec θ = 4
sec θ – tan θ = 1/4
sec4 x - tan4 x is equal to ?
Answer (Detailed Solution Below)
Trigonometric Identities Question 9 Detailed Solution
Download Solution PDFConcept:
a2 - b2 = (a - b) (a + b)
sec2 x - tan2 x = 1
Calculation:
sec4 x - tan4 x
=(sec2 x - tan2 x) (sec2 x + tan2 x) (∵ a2 - b2 = (a - b) (a + b))
= 1 × (1 + tan2 x + tan2 x) (∵ sec2 x - tan2 x = 1)
= 1 + 2tan2 x
What is the value of the expression
\(\rm sinA \left(1 + {sinA\over cosA} \right) + cosA \left(1 + {cosA\over sinA} \right)?\)
Answer (Detailed Solution Below)
Trigonometric Identities Question 10 Detailed Solution
Download Solution PDFFormula used
sin2A + cos2A = 1
1/sinA = cosecA
1/cosA = secA
Calculation
\(\rm sinA \left(1 + {sinA\over cosA} \right) + cosA \left(1 + {cosA\over sinA} \right)?\)
⇒ sinA (cosA + sinA)/cosA + cosA(sinA + cosA)/sinA
⇒ (sinA + cosA) [(sinA/cosA) + (cosA/sinA)]
⇒ (sinA + cosA) [(sin2A + cos2A)/(cosA.sinA)]
⇒ (sinA + cosA) [1/(cosA.sinA)]
⇒ 1/sinA + 1/cosA
⇒ secA + CosecA
The answer is secA + CosecA.
\(\frac{cot^3θ}{cosec^2θ}+\frac{tan^3θ}{sec^2 θ}\) + 2sinθ cosθ = ?
Answer (Detailed Solution Below)
Trigonometric Identities Question 11 Detailed Solution
Download Solution PDFGiven:
\(\frac{cot^3θ}{cosec^2θ}+\frac{tan^3θ}{sec^2 θ}\) + 2sinθ cosθ
Formula:
(a + b)2 = a2 + b2 + 2ab
sin2θ + cos2θ = 1
Calculation:
\(\frac{cot^3θ}{cosec^2θ}+\frac{tan^3θ}{sec^2 θ}\) + 2sinθ cosθ
⇒ \(cos^3θ\over sin^3θ\) × sin2θ + \(sin^3θ\over cos^3θ\) × cos2θ + 2sinθ cosθ
⇒ \(cos^3θ\over sinθ\) + \(sin^3θ\over cosθ\) + 2sinθ cosθ
⇒ \({sin^4θ+cos^4θ+2sin^2θ cos^2θ}\over{sinθ cosθ}\)
⇒ \(({sin^2θ+cos^2θ})^2\over{sinθ cosθ}\) = \(1\over{sinθ cosθ}\)
⇒ \({1\over sinθ}\times{1\over cosθ}\) = cosecθ secθ (\(1\over{sinθ}\) = cosecθ, \(1\over{cosθ}\) = secθ)
∴ \(\frac{cot^3θ}{cosec^2θ}+\frac{tan^3θ}{sec^2 θ}\) + 2sinθ cosθ = cosecθ.secθ
\(\frac{{\sqrt {1 + {\rm{sinx}}} + \sqrt {1 - {\rm{sinx}}} }}{{\sqrt {1 + {\rm{sinx}}} - \sqrt {1 - {\rm{sinx}}} }}\) ?
Answer (Detailed Solution Below)
Trigonometric Identities Question 12 Detailed Solution
Download Solution PDFConcept:
- cosec x = 1/sin x
- cot x = cos x/ sin x
- cos2 x + sin2x = 1
Calculation:
Here we have to find the value of \(\frac{{\sqrt {1 + {\rm{sinx}}} + \sqrt {1 - {\rm{sinx}}} }}{{\sqrt {1 + {\rm{sinx}}} - \sqrt {1 - {\rm{sinx}}} }}\)
By rationalizing the expression \(\frac{{\sqrt {1 + {\rm{sinx}}} + \sqrt {1 - {\rm{sinx}}} }}{{\sqrt {1 + {\rm{sinx}}} - \sqrt {1 - {\rm{sinx}}} }}\) we get
\(= \frac{{\sqrt {1 + {\rm{sinx}}} + \sqrt {1 - {\rm{sinx}}} }}{{\sqrt {1 + {\rm{sinx}}} - \sqrt {1 - {\rm{sinx}}} }}{\rm{\;}} \times \;\frac{{\sqrt {1 + {\rm{sinx}}} + \sqrt {1 - {\rm{sinx}}} }}{{\sqrt {1 + {\rm{sinx}}} + \sqrt {1 - {\rm{sinx}}} }}\)
\( = \frac{{[\left( {1 + sinx + 1 - sinx} \right) + 2\sqrt {1 - si{n^2}x} }}{{\left( {1 + sinx - 1 + sinx} \right)}}\)
\( = \frac{{2 + 2{\rm{cosx}}}}{{2{\rm{\;sinx}}}}\)
∴ cosec x + cot x
What is \(\rm \frac{1+tan^2\theta}{1+cot^2\theta}-\left(\frac{1-tan\theta}{1-cot\theta}\right)^2\)equal to?
Answer (Detailed Solution Below)
Trigonometric Identities Question 13 Detailed Solution
Download Solution PDFConcept:
Trigonometry Formula
sec2 θ = 1 + tan2 θ
cosec2 θ = 1 + cot2 θ
cot θ = \(\rm \frac{1}{tan \theta }\)
sec θ = \(\rm \frac{1}{cos \theta }\)
cosec θ = \(\rm \frac{1}{sin \theta }\)
Calculation:
\(\rm \frac{1+tan^2\theta}{1+cot^2\theta}-\left(\frac{1-tan\theta}{1-cot\theta}\right)^2\)
\(= \frac{sec^2θ}{cosec^2θ}-\left(\frac{1-tanθ}{1-\frac{1}{tan θ }}\right)^2\)
\(= \rm \frac{\frac{1}{cos^{2}θ}}{\frac{1}{sin^{2}θ}} - \left (\frac{1 - tanθ}{\frac{tan θ - 1}{tan θ }} \right )^{2}\)
\(\rm = \frac{sin^{2}θ }{cos^{2} θ } - \left (\frac{1 - tanθ}{\frac{- (1 - tan θ )}{tan θ }} \right )^{2}\)
= tan2 θ - (-tan θ)2
= tan2 θ - tan2 θ
= 0
sec x + tan x = 2, find the value of cos x
Answer (Detailed Solution Below)
Trigonometric Identities Question 14 Detailed Solution
Download Solution PDFConcept:
sec2 x - tan2 x = 1
Calculation:
Given sec x + tan x = 2 ....(i)
∵ sec2 x - tan2 x = 1
(sec x + tan x)(sec x - tan x) = 1
2(sec x - tan x) = 1
sec x - tan x = \(1\over 2\) ....(ii)
Adding the equation (i) and (ii)
2 sec x = 2 + \(1\over 2\)
\(\rm{2\over \cos x} = {5\over 2}\)
cos x = \(4\over 5\)
Find the value of A, if √3 - 3√3tan2A = 3tan A - tan3A.
Answer (Detailed Solution Below)
Trigonometric Identities Question 15 Detailed Solution
Download Solution PDFGiven:
√3 - 3√3tan2A = 3tan A - tan3A
Formula used:
tan 3A = (3tan A - tan3A)/(1 - 3tan2A)
Calculation:
√3 - 3√3tan2A = 3tan A - tan3A
⇒ √3(1 - 3tan2A) = 3tan A - tan3A
⇒ √3 = (3tan A - tan3A)/(1 - 3tan2A)
⇒ √3 = tan 3A
⇒ tan 60° = tan 3A
⇒ 3A = 60°
⇒ A = 60°/3 = 20°
∴ The value of A is 20°.