Trigonometric Ratios MCQ Quiz - Objective Question with Answer for Trigonometric Ratios - Download Free PDF

Last updated on Apr 15, 2025

Latest Trigonometric Ratios MCQ Objective Questions

Trigonometric Ratios Question 1:

If a csθ + b sin θ = c, and a sin θ - b cos θ = d, then

  1. a+ b= c+ d2
  2. a- b= c- d2
  3. a+ 2b= 3+ d2
  4. 2a+ 3b= c+ d2

Answer (Detailed Solution Below)

Option 1 : a+ b= c+ d2

Trigonometric Ratios Question 1 Detailed Solution

- guacandrollcantina.com

We are given the following equations:

\[ a \cos \theta + b \sin \theta = c \]

\[ a \sin \theta - b \cos \theta = d \]

To find a relationship between \( a \), \( b \), \( c \), and \( d \), we square both equations and add them:

\[ (a \cos \theta + b \sin \theta)^2 + (a \sin \theta - b \cos \theta)^2 = c^2 + d^2 \]

Expanding the left-hand side:

\[ a^2 \cos^2 \theta + 2ab \cos \theta \sin \theta + b^2 \sin^2 \theta + a^2 \sin^2 \theta - 2ab \cos \theta \sin \theta + b^2 \cos^2 \theta = c^2 + d^2 \]

Simplifying:

\[ a^2 (\cos^2 \theta + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) = c^2 + d^2 \]

Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \):

\[ a^2 + b^2 = c^2 + d^2 \]

Thus, the relationship between \( a \), \( b \), \( c \), and \( d \) is:

\[ \boxed{a^2 + b^2 = c^2 + d^2} \]

Trigonometric Ratios Question 2:

Algebraic and Geometrical Ability

sin2 30° + cos45° + sin2 60° + cos2 120° + sin2 150° =

  1. \(\frac{3}{2}\)
  2. \(\frac{5}{2}\)
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Trigonometric Ratios Question 2 Detailed Solution

- guacandrollcantina.com

To evaluate the expression:

\[ \sin^2 30^\circ + \cos^2 45^\circ + \sin^2 60^\circ + \cos^2 120^\circ + \sin^2 150^\circ \]

we calculate each term individually:

\[ \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \]

\[ \cos^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \]

\[ \sin^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \]

\[ \cos^2 120^\circ = \left(-\frac{1}{2}\right)^2 = \frac{1}{4} \]

\[ \sin^2 150^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \]

Adding all the terms:

\[ \frac{1}{4} + \frac{1}{2} + \frac{3}{4} + \frac{1}{4} + \frac{1}{4} = 2 \]

Thus, the value of the expression is:

\[ \boxed{2} \]

Trigonometric Ratios Question 3:

If ΔABC is right angled at C , then the value of tanA + tanB is

  1. a + b
  2. \(\frac{\mathrm{a}^2}{\mathrm{bc}}\)
  3. \(\frac{c^2}{a b}\)
  4. \(\frac{\mathrm{b}^2}{\mathrm{ac}}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{c^2}{a b}\)

Trigonometric Ratios Question 3 Detailed Solution

Calculation

Given:

Triangle ABC is right-angled at C.

\(\tan A = \frac{BC}{AC} = \frac{a}{b}\)

\(\tan B = \frac{AC}{BC} = \frac{b}{a}\)

Therefore, \(\tan A + \tan B = \frac{a}{b} + \frac{b}{a}\)

\(\tan A + \tan B = \frac{a^2 + b^2}{ab}\)

By the Pythagorean theorem, in a right-angled triangle, \(a^2 + b^2 = c^2\), where c is the hypotenuse.

So, \(\tan A + \tan B = \frac{c^2}{ab}\)

Hence option 3 is correct

Trigonometric Ratios Question 4:

If f(p) = sinp + 2x + cosp + 2x, then the value of 6f(2) - 4ƒ(4) + 10f(0) is:

  1. 14
  2. 12
  3. 11
  4. 10

Answer (Detailed Solution Below)

Option 2 : 12

Trigonometric Ratios Question 4 Detailed Solution

Given:

f(p) = sinp + 2x + cosp + 2x

Calculation:

To find the value of 6f(2) - 4f(4) + 10f(0), first calculate f(p) for p = 2, p = 4, and p = 0:

For p = 2:

f(2) = sin4x + cos4x

For p = 4:

f(4) = sin6x + cos6x

For p = 0:

f(0) = sin2x + cos2x

We know that sin2x + cos2x = 1.

Using the identity for sin4x + cos4x:

sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x cos2x

sin4x + cos4x = 1 - 2sin2x cos2x

Using the identity sin2x cos2x = (1/4)sin2(2x):

sin4x + cos4x = 1 - (1/2)sin2(2x)

To find sin6x + cos6x, use the identity:

sin6x + cos6x = (sin2x + cos2x)3 - 3sin2x cos2x(sin2x + cos2x)

sin6x + cos6x = 1 - 3(sin2x cos2x)

sin6x + cos6x = 1 - (3/4)sin2(2x)

Now calculate 6f(2) - 4f(4) + 10f(0):

6f(2) = 6(sin4x + cos4x) = 6(1 - (1/2)sin2(2x))

4f(4) = 4(sin6x + cos6x) = 4(1 - (3/4)sin2(2x))

10f(0) = 10(sin2x + cos2x) = 10

Combine:

6f(2) - 4f(4) + 10f(0)

= 6[1 - (1/2)sin2(2x)] - 4[1 - (3/4)sin2(2x)] + 10

= 6 - 3sin2(2x) - 4 + 3sin2(2x) + 10

= 6 - 4 + 10

= 12

The value of 6f(2) - 4f(4) + 10f(0) is 12.

Trigonometric Ratios Question 5:

What is the value of sin 10°·sin 50° + sin 50°·sin 250° + sin 250°·sin 10° equal to?

  1. \(-\frac{1}{4}\)
  2. \(-\frac{3}{4}\)
  3. \(\frac{3 \sin 10^{\circ}}{4}\)
  4. \(-\frac{3 \cos 10^{\circ}}{4}\)
  5. None of these

Answer (Detailed Solution Below)

Option 2 : \(-\frac{3}{4}\)

Trigonometric Ratios Question 5 Detailed Solution

Concept:

Formula: 2sin A sin B = cos(A - B) - cos(A + B)

cos c + cod d = 2cos\(c+d\over2\)cos\(c-d\over2\)

Explanation:

sin 10°·sin 50° + sin 50°·sin 250° + sin 250°·sin 10° 

\(\frac12\) (2sin 10°·sin 50° + 2sin 50°·sin 250° + 2sin 250°·sin 10°)

\(\frac12\)(cos 40° - cos 60° + cos 200° - cos 300° + cos 240° - cos 260°)

\(\frac12\){cos 40° \(\frac12\) + cos 200° cos (360° - 60°) + cos (180° + 60°) cos 26

\(\frac12\){cos 40° \(\frac12\) + cos 200° \(\frac12\) - \(\frac12\) - cos 26

\(\frac12\){- \(\frac32\) + cos 200° + cos 40° - cos 260°}

\(\frac12\){- \(\frac32\) + 2cos120° cos80° - cos260°}

\(\frac12\){- \(\frac32\) + 2cos(180° - 60°) cos80° - cos26}

\(\frac12\){- \(\frac32\) - 2cos 60° cos80° - cos26}

\(\frac12\){- \(\frac32\) - cos80° - cos26}

\(\frac12\){- \(\frac32\) - (cos80° + cos260°)}

\(\frac12\){- \(\frac32\) - (cos80° + cos(180° + 80°))}

\(\frac12\){- \(\frac32\) - (cos80° - cos80°)}

\(-\frac{3}{4}\)

Option (2) is true.

Top Trigonometric Ratios MCQ Objective Questions

If sin x + sin2x = 1, then value of cos2x + cos4 x is

  1. 1
  2. 2
  3. 1.5
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 1

Trigonometric Ratios Question 6 Detailed Solution

Download Solution PDF

Concept:

sin2x + cos2x = 1

Calculation:

Given: sin x + sin2 x = 1

As we know that, sin2x + cos2x = 1

⇒ sin x + (1 – cos2 x) = 1

⇒ sin x = cos2 x ----(1)

⇒ sin2 x = cos4 x (Using (1)) 

⇒ cos2 x + cos4 x = sin x + sin2 x = 1

Given that (1 + cos2A) = 3sinA.cosA, then find the value of cotA

  1. -1 or 1/2
  2. 1 or 1/2
  3. 1 or -1/2
  4. -1 or -1/2

Answer (Detailed Solution Below)

Option 2 : 1 or 1/2

Trigonometric Ratios Question 7 Detailed Solution

Download Solution PDF

Given:

(1 + cos2A) = 3sinA.cosA

Solution:

Dividing by cos2A,

⇒ (1 + cos2A) = 3sinA.cosA

⇒ (1 + sec2A) = 3tanA

We know that: sec2A = (1 + tan2A)

⇒ 2 + tan2A = 3tanA

⇒ tan2A – 3tanA + 2 = 0

⇒ (tan A – 1) (tan A – 2) = 0

⇒ tan A = 1 or 2

∴ cot A = 1 or 1/2

If \(\cos \theta = \frac{8}{{17}}\) and θ lies in the first quadrant, then the value of cos (30 + θ) + cos (45 – θ) + cos (120 – θ) is

  1. \(\frac{{23}}{{17}}\left( {\frac{{\sqrt 3 - 1}}{2} + \frac{1}{{\sqrt 2 }}} \right)\)
  2. \(\frac{{23}}{{17}}\left( {\frac{{\sqrt 3 + 1}}{2} + \frac{1}{{\sqrt 2 }}} \right)\)
  3. \(\frac{{23}}{{17}}\left( {\frac{{\sqrt 3 - 1}}{2} - \frac{1}{{\sqrt 2 }}} \right)\)
  4. \(\frac{{23}}{{17}}\left( {\frac{{\sqrt 3 + 1}}{2} - \frac{1}{{\sqrt 2 }}} \right)\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{23}}{{17}}\left( {\frac{{\sqrt 3 - 1}}{2} + \frac{1}{{\sqrt 2 }}} \right)\)

Trigonometric Ratios Question 8 Detailed Solution

Download Solution PDF

Concept:

  • sin2 x + cos2 x = 1
  • cos (A + B) = cos A cos B – sin A sin B
  • cos (A – B) = cos A cos B + sin A sin B

Calculation:

Given: \(\cos \theta = \frac{8}{{17}}\) and θ is in 1st quadrant

\(\sin \theta = \sqrt {1 - {{\cos }^2}\theta } = \frac{{15}}{{17}}\)

cos (30 + θ) = cos 30 cos θ – sin 30 sin θ

\(= \frac{{\sqrt 3 }}{2}\left( {\frac{8}{{17}}} \right) - \left( {\frac{1}{2}} \right)\left( {\frac{{15}}{{17}}} \right)\)

\(= {{8\sqrt 3 - 15}}{{34}}\)     ----(1)

cos (45 – θ) = cos 45 cos θ + sin 45 sin θ

\(= \left( {\frac{1}{{\sqrt 2 }}} \right)\left( {\frac{8}{{17}}} \right) + \left( {\frac{1}{{\sqrt 2 }}} \right)\left( {\frac{{15}}{{17}}} \right)\)

\(= \frac{{23\sqrt 2}}{{34}}\)      ----(2)

cos (120 – θ) = cos 120 cos θ + sin 120 sin θ

\(= \left( { - \frac{1}{2}} \right)\left( {\frac{8}{{17}}} \right) + \left( {\frac{{\sqrt 3 }}{2}} \right)\left( {\frac{{15}}{{17}}} \right)\)      

\(= \frac{{15\sqrt 3 - 8}}{{34}}\) ----(3)

Adding (1), (2) and (3)

\(\frac{{8\sqrt 3 - 15}}{{34}} + \frac{{23\sqrt 2 }}{{34}} + \frac{{15\sqrt 3 - 8}}{{34}}\)

\(\Rightarrow \frac{{23\sqrt 3 + 23\sqrt 2 - 23}}{{34}}\)

\(\Rightarrow \frac{{23}}{{17}}\left[ {\frac{{\sqrt 3 - 1}}{2} + \frac{1}{{\sqrt 2 }}} \right]\)

If (cosec x + cot x)/(cosec x – cot x) = 7. Then, find the value of (4sin2x + 1)/(4sin2x – 1).

  1. 12/11
  2. 11/3
  3. 13/5
  4. 12/7

Answer (Detailed Solution Below)

Option 2 : 11/3

Trigonometric Ratios Question 9 Detailed Solution

Download Solution PDF

Given

(cosec x + cot x)/(cosec x – cot x) = 7

Formula used

Cos2x = 1 – sin2x

Calculation

(cosec x + cot x)/(cosec x – cot x) = 7

⇒ (cosec x + cot x = 7(cosec x – cot x)

⇒ 8cot x = 6 cosec x

⇒ (8cos x)/sin x = 6/sin x

⇒ Cos x = 3/4

⇒ Cos2 x = 9/16

⇒ Sin2 x = 1 – 9/16

⇒ Sin2 x = 7/16

⇒ (4sin2x + 1)/(4sin2x – 1) = (4 × 7/16 + 1)/(4 × 7/16 – 1)

⇒ (7/4 + 1)/(7/4 –1)

⇒ (11/4)/(3/4)

⇒ 11/3

∴ The value of  (4sin2x + 1)/(4sin2x 1) is 11/3

If tan θ = \(\frac{-4}{3}\), then sin θ is

  1. \(\rm \frac{-4}{5} \ but \ not\ \frac{4}{5} \)
  2. \(\rm \frac{-4}{5} \ or\ \frac{4}{5}\)
  3. \(\rm \frac{4}{5} \ but \ not\ -\frac{4}{5} \)
  4. None of these 

Answer (Detailed Solution Below)

Option 2 : \(\rm \frac{-4}{5} \ or\ \frac{4}{5}\)

Trigonometric Ratios Question 10 Detailed Solution

Download Solution PDF

Calculation:

Given tan θ = \(-\frac{4}{3}\).

Consider a right angled triangle with perpendicular 4 units and base 3 units.

By pythagorus theorem h = \(\rm\sqrt{p^2+b^2} \)

⇒ h = 5.

∴ sin θ = \(\rm\frac{p}{h}\)

⇒ sin θ = \(\frac{4}{5}\)

We know that tan function is negative in 2nd and 4th quadrant.

Sin function is positive in 2nd quadrant and negative in 4th quadrant.

If θ is in 2nd quadrant, sin θ  = \(\rm\frac{4}{5}\).

If θ is in 4th quadrant, sin θ = \(\frac{-4}{5}\).

sin θ can be \(\frac{4}{5}\) or \(-\frac{4}{5}\).

If \(sin\theta = {p^2 - 1 \over p^2 + 1}\), find the value of cos θ.

  1. \({2p^2 \over p^2 + 1}\)
  2. \({4p \over p^2 + 1}\)
  3. \({2p \over p^2 + 1}\)
  4. \({4p^2 \over p^2 - 1}\)

Answer (Detailed Solution Below)

Option 3 : \({2p \over p^2 + 1}\)

Trigonometric Ratios Question 11 Detailed Solution

Download Solution PDF

\(\sin \theta = \frac{{{p^2} - 1}}{{{p^2} + 1}}\)

∴ sin2 θ + cos2 θ = 1

\(\Rightarrow {\cos ^2}\theta = 1 - \frac{{{{\left( {{p^2} - 1} \right)}^2}}}{{{{\left( {{p^2} + 1} \right)}^2}}} = \frac{{{{\left( {{p^2} + 1} \right)}^2} - {{\left( {{p^2} - 1} \right)}^2}}}{{{{\left( {{p^2} + 1} \right)}^2}}}\)

\(\Rightarrow {\cos ^2}\theta = \frac{{4{p^2}}}{{{{\left( {{p^2} + 1} \right)}^2}}}\)

\(\Rightarrow \cos \theta = \frac{{2p}}{{\left( {{p^2} + 1} \right)}}\)

If \({\rm{co}}{{\rm{s}}^{ - 1}}\left( {\frac{1}{{\sqrt 5 }}} \right) = {\rm{\theta }}\), then what is the value of \({\rm{cose}}{{\rm{c}}^{ - 1}}\left( {\sqrt 5 } \right)?\)

  1. \(\left( {\frac{{\rm{\pi }}}{2}} \right) + {\rm{\theta }}\)
  2. \(\left( {\frac{{\rm{\pi }}}{2}} \right) - {\rm{\theta }}\)
  3. \(\frac{{\rm{\pi }}}{2}\)

Answer (Detailed Solution Below)

Option 2 : \(\left( {\frac{{\rm{\pi }}}{2}} \right) - {\rm{\theta }}\)

Trigonometric Ratios Question 12 Detailed Solution

Download Solution PDF

Concept:

sec-1 x = cos-1 (1/x)

cosec-1 (x) + sec-1 (x) = π / 2

Calculation:

As we know that, 

sec-1 x = cos-1 (1/x)

\({\rm{co}}{{\rm{s}}^{ - 1}}\left( {\frac{1}{{\sqrt 5 }}} \right) = {\rm{\theta }} \)

\(\Rightarrow {\rm{se}}{{\rm{c}}^{ - 1}}\left( {\sqrt 5 } \right) = {\rm{\theta }}\)

As we know that,

cosec-1 (x) + sec-1 (x) = π / 2

\(\Rightarrow \frac{{\rm{\pi }}}{2} - {\rm{cose}}{{\rm{c}}^{ - 1}}\left( {\sqrt 5 } \right) = {\rm{\theta }}\)

\(\therefore {\rm{cose}}{{\rm{c}}^{ - 1}}\left( {\sqrt 5 } \right) = \frac{{\rm{\pi }}}{2} - {\rm{\theta }}\)

If  tan \(A=\frac{{1.1}}{{6}}\)then what is the value of (4cos A - 7sin A)? Given that A an acute angle.

  1. \(2\frac{{41}}{{61}}\)
  2. \(2\frac{{14}}{{61}}\)
  3. \(2\frac{{41}}{{71}}\)
  4. \(2\frac{{14}}{{71}}\)

Answer (Detailed Solution Below)

Option 1 : \(2\frac{{41}}{{61}}\)

Trigonometric Ratios Question 13 Detailed Solution

Download Solution PDF

Given:

tan \(A=\frac{{1.1}}{{6}}\)

⇒ tan A = 11/60

Formulas used:

tan A = Perpendicular/Base, where A is an acute angle

Pythagoras Theorem 

F1 Ashish S 25-10-21 Savita D5

In triangle xyz, xz = Hypotenuse

(xz)2 = (xy)2 + (yz)2

Calculation:

(xz)2 = 112 + 602 

⇒ xz = √3721 = 61 

Now,  (4cos A - 7sin A) 

⇒ 4 × B/H - 7 × P/H 

⇒ 4 × 60/61 - 7 × 11/61 

⇒ 240/61 - 77/61 = 163/61 

⇒ \(2\frac{{41}}{{61}}\)

∴ (4cos A - 7sin A) = \(2\frac{{41}}{{61}}\) 

If sin (A + B) = cos (A - B) = \(\frac{\sqrt{3}}{2}\), acute angles of A and B are

  1. 45° and 15°
  2. 30° and 60°
  3. 15° and 60°
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 45° and 15°

Trigonometric Ratios Question 14 Detailed Solution

Download Solution PDF

Concept:

  • sin 60° = \(\frac{\sqrt{3}}{2}\)

  • cos 30° = \(\frac{\sqrt{3}}{2}\)

Calculation:

Since, sin (A + B) = \(\frac{\sqrt{3}}{2}\)

⇒ sin (A + B) = sin 60° 

⇒ A + B = 60°      ----(1)

Also, cos (A - B) = \(\frac{\sqrt{3}}{2}\)

⇒ cos (A - B) = cos 30° 

⇒ A - B = 30°      ----(2)

On solving equations (1) & (2), we get,

A = 45° and B = 15° 

Hence, acute angles of A and B are 45° and 15° respectively.

If \(\rm tan\:x=-\dfrac{3}{4}\) and x is in the second quadrant, then what is the value of sin x ⋅ cos x?

  1. \(\dfrac{6}{25}\)
  2. \(\dfrac{12}{25}\)
  3. \(-\dfrac{6}{25}\)
  4. \(-\dfrac{12}{25}\)

Answer (Detailed Solution Below)

Option 4 : \(-\dfrac{12}{25}\)

Trigonometric Ratios Question 15 Detailed Solution

Download Solution PDF

Concept:

tan x = \(\rm \frac{Perpendicular}{Base}\) = \(\rm \frac{P}{B}\) 

sin x = \(\rm \frac{Perpendicular}{Hypotenuse}\) = \(\rm \frac{P}{H}\) 

cos x = \(\rm \frac{Base}{Hypotenuse}\) = \(\rm \frac{B}{H}\) 

By Pythagoras theorem

Hypotenuse2 = Perpendicular2 + Base2 

 

Calculation:

Given:

\(\rm tan\:x=-\dfrac{3}{4}\)

P= 3, B = - 4

By Pythagoras theorem

H2 = P2 + B2

=  32  + (-4)2

Hypotenuse(H) = 5

sin x  = \(\rm \frac{3}{5}\)

cos x = \(\rm \frac{-4}{5}\)

sin x . cos x = \(\rm \frac{3}{5} . \rm \frac{-4}{5}\) = \(\rm \frac{-12}{25}\)

Get Free Access Now
Hot Links: teen patti master gold apk teen patti master app teen patti palace teen patti joy mod apk teen patti gold new version