Trigonometric Ratios MCQ Quiz - Objective Question with Answer for Trigonometric Ratios - Download Free PDF
Last updated on Jun 14, 2025
Latest Trigonometric Ratios MCQ Objective Questions
Trigonometric Ratios Question 1:
Comprehension:
Let p = tan 2α - tanα and q = cotα - cot 2α
What is tan2α equal to?
Answer (Detailed Solution Below)
Trigonometric Ratios Question 1 Detailed Solution
Calculation:
We are given:
\( p = \tan(2\alpha) - \tan(\alpha) \)
\( q = \cot(\alpha) - \cot(2\alpha) \)
We need to find \(\tan^2(\alpha) \) in terms of p and q .
We start by simplifying the expression \(\frac{p}{p + 2q} \)
\( \frac{p}{p + 2q} = \frac{1}{1 + \frac{2q}{p}} \)
This simplifies further as:
\( \frac{1}{1 + \frac{2}{\tan(\alpha) \cdot \tan(2\alpha)}} \)
Now, simplify the fraction inside the denominator:
\( = \frac{1}{1 + \frac{2}{\tan(\alpha) \cdot \tan(2\alpha)}} = \frac{1}{1 + \frac{1}{2} \cdot \tan(\alpha) \cdot \tan(2\alpha)} \)
Now, expand both terms using trigonometric identities:
\( = \frac{\sin(\alpha) \cdot \sin(2\alpha)}{\sin(\alpha) \cdot \cos(\alpha) + \cos(\alpha) \cdot \cos(2\alpha)} \)
Simplifying this expression gives:
\( = \tan^2(\alpha) \)
∴ The correct answer is Option (c):
Trigonometric Ratios Question 2:
Comprehension:
Let p = tan 2α - tanα and q = cotα - cot 2α
What is equal to?
Answer (Detailed Solution Below)
Trigonometric Ratios Question 2 Detailed Solution
Calculation:
We are given:
\( p = \tan(2\alpha) - \tan(\alpha) \)
\( q = \cot(\alpha) - \cot(2\alpha) \)
We need to find p + q.
\( p + q = \left( \frac{\sin^2(2\alpha) - \cos^2(2\alpha)}{\sin(2\alpha) \cdot \cos(2\alpha)} \right) + \left( \frac{\cos^2(\alpha) - \sin^2(\alpha)}{\sin(\alpha) \cdot \cos(\alpha)} \right) \)
Simplifying both terms:
\( = \frac{-2\cos(4\alpha)}{\sin(4\alpha)} + \frac{2\cos(2\alpha)}{\sin(2\alpha)} \)
Now, factorizing and simplifying further:
\( = \frac{2(\sin(4\alpha) \cdot \cos(2\alpha) - \cos(4\alpha) \cdot \sin(2\alpha))}{\sin(4\alpha) \cdot \sin(2\alpha)} \)
Recognizing the sine identity, we get:
\( = \frac{2 \sin(4\alpha - 2\alpha)}{\sin(4\alpha) \cdot \sin(2\alpha)} \)
Finally, simplifying this:
\( = \frac{2 \sin(2\alpha)}{\sin(4\alpha) \cdot \sin(2\alpha)} \)
The final result is:
\( p + q = 2 cosec (4\alpha) \)
∴ The correct answer is Option (4)
Trigonometric Ratios Question 3:
Comprehension:
Let p = tan 2α - tanα and q = cotα - cot 2α
What is (p/q) equal to?
Answer (Detailed Solution Below)
Trigonometric Ratios Question 3 Detailed Solution
Explanation:
We are given:
\( p = \tan(2\alpha) - \tan(\alpha) \)
\( q = \cot(\alpha) - \cot(2\alpha) \)
We rewrite q in terms of tangent since \(\cot(\theta) = \frac{1}{\tan(\theta)} \)
\( q = \frac{1}{\tan(\alpha)} - \frac{1}{\tan(2\alpha)} \)
Now we compute \(\cot(\theta) = \frac{1}{\tan(\theta)} \)
\( \frac{p}{q} = \frac{\tan(2\alpha) - \tan(\alpha)}{\frac{1}{\tan(\alpha)} - \frac{1}{\tan(2\alpha)}} \)
Next, we find a common denominator for q :
\( \frac{1}{\tan(\alpha)} - \frac{1}{\tan(2\alpha)} = \frac{\tan(2\alpha) - \tan(\alpha)}{\tan(\alpha) \cdot \tan(2\alpha)} \)
Substituting this back into the formula for \(\frac{p}{q} \)
\( \frac{p}{q} = \frac{\tan(2\alpha) - \tan(\alpha)}{\frac{\tan(2\alpha) - \tan(\alpha)}{\tan(\alpha) \cdot \tan(2\alpha)}} \)
Simplifying, we get:
\( \frac{p}{q} = \tan(\alpha) \cdot \tan(2\alpha) \)
∴ The correct answer is Option (c): \( \tan(\alpha) \cdot \tan(2\alpha) \)
Trigonometric Ratios Question 4:
If a csθ + b sin θ = c, and a sin θ - b cos θ = d, then
Answer (Detailed Solution Below)
Trigonometric Ratios Question 4 Detailed Solution
We are given the following equations:
\[ a \cos \theta + b \sin \theta = c \]
\[ a \sin \theta - b \cos \theta = d \]
To find a relationship between \( a \), \( b \), \( c \), and \( d \), we square both equations and add them:
\[ (a \cos \theta + b \sin \theta)^2 + (a \sin \theta - b \cos \theta)^2 = c^2 + d^2 \]
Expanding the left-hand side:
\[ a^2 \cos^2 \theta + 2ab \cos \theta \sin \theta + b^2 \sin^2 \theta + a^2 \sin^2 \theta - 2ab \cos \theta \sin \theta + b^2 \cos^2 \theta = c^2 + d^2 \]
Simplifying:
\[ a^2 (\cos^2 \theta + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) = c^2 + d^2 \]
Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \):
\[ a^2 + b^2 = c^2 + d^2 \]
Thus, the relationship between \( a \), \( b \), \( c \), and \( d \) is:
\[ \boxed{a^2 + b^2 = c^2 + d^2} \]
Trigonometric Ratios Question 5:
Algebraic and Geometrical Ability
sin2 30° + cos2 45° + sin2 60° + cos2 120° + sin2 150° =
Answer (Detailed Solution Below)
Trigonometric Ratios Question 5 Detailed Solution
To evaluate the expression:
\[ \sin^2 30^\circ + \cos^2 45^\circ + \sin^2 60^\circ + \cos^2 120^\circ + \sin^2 150^\circ \]
we calculate each term individually:
\[ \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \]
\[ \cos^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \]
\[ \sin^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \]
\[ \cos^2 120^\circ = \left(-\frac{1}{2}\right)^2 = \frac{1}{4} \]
\[ \sin^2 150^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \]
Adding all the terms:
\[ \frac{1}{4} + \frac{1}{2} + \frac{3}{4} + \frac{1}{4} + \frac{1}{4} = 2 \]
Thus, the value of the expression is:
\[ \boxed{2} \]
Top Trigonometric Ratios MCQ Objective Questions
If sin x + sin2x = 1, then value of cos2x + cos4 x is
Answer (Detailed Solution Below)
Trigonometric Ratios Question 6 Detailed Solution
Download Solution PDFConcept:
sin2x + cos2x = 1
Calculation:
Given: sin x + sin2 x = 1
As we know that, sin2x + cos2x = 1
⇒ sin x + (1 – cos2 x) = 1
⇒ sin x = cos2 x ----(1)
⇒ sin2 x = cos4 x (Using (1))
⇒ cos2 x + cos4 x = sin x + sin2 x = 1Given that (1 + cos2A) = 3sinA.cosA, then find the value of cotA
Answer (Detailed Solution Below)
Trigonometric Ratios Question 7 Detailed Solution
Download Solution PDFGiven:
(1 + cos2A) = 3sinA.cosA
Solution:
Dividing by cos2A,
⇒ (1 + cos2A) = 3sinA.cosA
⇒ (1 + sec2A) = 3tanA
We know that: sec2A = (1 + tan2A)
⇒ 2 + tan2A = 3tanA
⇒ tan2A – 3tanA + 2 = 0
⇒ (tan A – 1) (tan A – 2) = 0
⇒ tan A = 1 or 2
∴ cot A = 1 or 1/2If tan θ = \(\frac{-4}{3}\), then sin θ is
Answer (Detailed Solution Below)
Trigonometric Ratios Question 8 Detailed Solution
Download Solution PDFCalculation:
Given tan θ = \(-\frac{4}{3}\).
Consider a right angled triangle with perpendicular 4 units and base 3 units.
By pythagorus theorem h = \(\rm\sqrt{p^2+b^2} \)
⇒ h = 5.
∴ sin θ = \(\rm\frac{p}{h}\)
⇒ sin θ = \(\frac{4}{5}\)
We know that tan function is negative in 2nd and 4th quadrant.
Sin function is positive in 2nd quadrant and negative in 4th quadrant.
If θ is in 2nd quadrant, sin θ = \(\rm\frac{4}{5}\).
If θ is in 4th quadrant, sin θ = \(\frac{-4}{5}\).
sin θ can be \(\frac{4}{5}\) or \(-\frac{4}{5}\).
If \(\cos \theta = \frac{8}{{17}}\) and θ lies in the first quadrant, then the value of cos (30 + θ) + cos (45 – θ) + cos (120 – θ) is
Answer (Detailed Solution Below)
Trigonometric Ratios Question 9 Detailed Solution
Download Solution PDFConcept:
- sin2 x + cos2 x = 1
- cos (A + B) = cos A cos B – sin A sin B
- cos (A – B) = cos A cos B + sin A sin B
Calculation:
Given: \(\cos \theta = \frac{8}{{17}}\) and θ is in 1st quadrant
\(\sin \theta = \sqrt {1 - {{\cos }^2}\theta } = \frac{{15}}{{17}}\)
cos (30 + θ) = cos 30 cos θ – sin 30 sin θ
\(= \frac{{\sqrt 3 }}{2}\left( {\frac{8}{{17}}} \right) - \left( {\frac{1}{2}} \right)\left( {\frac{{15}}{{17}}} \right)\)
\(= {{8\sqrt 3 - 15}}{{34}}\) ----(1)
cos (45 – θ) = cos 45 cos θ + sin 45 sin θ
\(= \left( {\frac{1}{{\sqrt 2 }}} \right)\left( {\frac{8}{{17}}} \right) + \left( {\frac{1}{{\sqrt 2 }}} \right)\left( {\frac{{15}}{{17}}} \right)\)
\(= \frac{{23\sqrt 2}}{{34}}\) ----(2)
cos (120 – θ) = cos 120 cos θ + sin 120 sin θ
\(= \left( { - \frac{1}{2}} \right)\left( {\frac{8}{{17}}} \right) + \left( {\frac{{\sqrt 3 }}{2}} \right)\left( {\frac{{15}}{{17}}} \right)\)
\(= \frac{{15\sqrt 3 - 8}}{{34}}\) ----(3)
Adding (1), (2) and (3)
\(\frac{{8\sqrt 3 - 15}}{{34}} + \frac{{23\sqrt 2 }}{{34}} + \frac{{15\sqrt 3 - 8}}{{34}}\)
\(\Rightarrow \frac{{23\sqrt 3 + 23\sqrt 2 - 23}}{{34}}\)
\(\Rightarrow \frac{{23}}{{17}}\left[ {\frac{{\sqrt 3 - 1}}{2} + \frac{1}{{\sqrt 2 }}} \right]\)If (cosec x + cot x)/(cosec x – cot x) = 7. Then, find the value of (4sin2x + 1)/(4sin2x – 1).
Answer (Detailed Solution Below)
Trigonometric Ratios Question 10 Detailed Solution
Download Solution PDFGiven
(cosec x + cot x)/(cosec x – cot x) = 7
Formula used
Cos2x = 1 – sin2x
Calculation
(cosec x + cot x)/(cosec x – cot x) = 7
⇒ (cosec x + cot x = 7(cosec x – cot x)
⇒ 8cot x = 6 cosec x
⇒ (8cos x)/sin x = 6/sin x
⇒ Cos x = 3/4
⇒ Cos2 x = 9/16
⇒ Sin2 x = 1 – 9/16
⇒ Sin2 x = 7/16
⇒ (4sin2x + 1)/(4sin2x – 1) = (4 × 7/16 + 1)/(4 × 7/16 – 1)
⇒ (7/4 + 1)/(7/4 –1)
⇒ (11/4)/(3/4)
⇒ 11/3
∴ The value of (4sin2x + 1)/(4sin2x – 1) is 11/3
If \(sin\theta = {p^2 - 1 \over p^2 + 1}\), find the value of cos θ.
Answer (Detailed Solution Below)
Trigonometric Ratios Question 11 Detailed Solution
Download Solution PDF\(\sin \theta = \frac{{{p^2} - 1}}{{{p^2} + 1}}\)
∴ sin2 θ + cos2 θ = 1
\(\Rightarrow {\cos ^2}\theta = 1 - \frac{{{{\left( {{p^2} - 1} \right)}^2}}}{{{{\left( {{p^2} + 1} \right)}^2}}} = \frac{{{{\left( {{p^2} + 1} \right)}^2} - {{\left( {{p^2} - 1} \right)}^2}}}{{{{\left( {{p^2} + 1} \right)}^2}}}\)
\(\Rightarrow {\cos ^2}\theta = \frac{{4{p^2}}}{{{{\left( {{p^2} + 1} \right)}^2}}}\)
\(\Rightarrow \cos \theta = \frac{{2p}}{{\left( {{p^2} + 1} \right)}}\)If \({\rm{co}}{{\rm{s}}^{ - 1}}\left( {\frac{1}{{\sqrt 5 }}} \right) = {\rm{\theta }}\), then what is the value of \({\rm{cose}}{{\rm{c}}^{ - 1}}\left( {\sqrt 5 } \right)?\)
Answer (Detailed Solution Below)
Trigonometric Ratios Question 12 Detailed Solution
Download Solution PDFConcept:
sec-1 x = cos-1 (1/x)
cosec-1 (x) + sec-1 (x) = π / 2
Calculation:
As we know that,
sec-1 x = cos-1 (1/x)
\({\rm{co}}{{\rm{s}}^{ - 1}}\left( {\frac{1}{{\sqrt 5 }}} \right) = {\rm{\theta }} \)
\(\Rightarrow {\rm{se}}{{\rm{c}}^{ - 1}}\left( {\sqrt 5 } \right) = {\rm{\theta }}\)
As we know that,
cosec-1 (x) + sec-1 (x) = π / 2
\(\Rightarrow \frac{{\rm{\pi }}}{2} - {\rm{cose}}{{\rm{c}}^{ - 1}}\left( {\sqrt 5 } \right) = {\rm{\theta }}\)
\(\therefore {\rm{cose}}{{\rm{c}}^{ - 1}}\left( {\sqrt 5 } \right) = \frac{{\rm{\pi }}}{2} - {\rm{\theta }}\)
If tan \(A=\frac{{1.1}}{{6}}\)then what is the value of (4cos A - 7sin A)? Given that A an acute angle.
Answer (Detailed Solution Below)
Trigonometric Ratios Question 13 Detailed Solution
Download Solution PDFGiven:
tan \(A=\frac{{1.1}}{{6}}\)
⇒ tan A = 11/60
Formulas used:
tan A = Perpendicular/Base, where A is an acute angle
Pythagoras Theorem
In triangle xyz, xz = Hypotenuse
(xz)2 = (xy)2 + (yz)2
Calculation:
(xz)2 = 112 + 602
⇒ xz = √3721 = 61
Now, (4cos A - 7sin A)
⇒ 4 × B/H - 7 × P/H
⇒ 4 × 60/61 - 7 × 11/61
⇒ 240/61 - 77/61 = 163/61
⇒ \(2\frac{{41}}{{61}}\)
∴ (4cos A - 7sin A) = \(2\frac{{41}}{{61}}\)
If sin (A + B) = cos (A - B) = \(\frac{\sqrt{3}}{2}\), acute angles of A and B are
Answer (Detailed Solution Below)
Trigonometric Ratios Question 14 Detailed Solution
Download Solution PDFConcept:
-
sin 60° = \(\frac{\sqrt{3}}{2}\)
-
cos 30° = \(\frac{\sqrt{3}}{2}\)
Calculation:
Since, sin (A + B) = \(\frac{\sqrt{3}}{2}\)
⇒ sin (A + B) = sin 60°
⇒ A + B = 60° ----(1)
Also, cos (A - B) = \(\frac{\sqrt{3}}{2}\)
⇒ cos (A - B) = cos 30°
⇒ A - B = 30° ----(2)
On solving equations (1) & (2), we get,
A = 45° and B = 15°
Hence, acute angles of A and B are 45° and 15° respectively.
Evaluate: 2 tan2 45° + cos2 30° - sin2 60°
Answer (Detailed Solution Below)
Trigonometric Ratios Question 15 Detailed Solution
Download Solution PDFGiven:
We have to evalute 2 tan2 45° + cos2 30° - sin2 60°
Formula Used:
tan45° = 1
Cos30° = √3/2
Sin60° = √3/2
Calculation:
2 tan2 45° + cos2 30° - sin2 60°
⇒ 2 × 12 + (√3/2)2 – (√3/2)2
⇒ 2 + 3/4 – 3/4
⇒ 2
∴ The value of 2 tan2 45° + cos2 30° - sin2 60° is 2.