Solving Homogeneous Differential Equation MCQ Quiz - Objective Question with Answer for Solving Homogeneous Differential Equation - Download Free PDF

Last updated on Jun 30, 2025

Latest Solving Homogeneous Differential Equation MCQ Objective Questions

Solving Homogeneous Differential Equation Question 1:

The general solution of the differential equation \(x \frac{d y}{d x}=y+x \tan \left(\frac{y}{x}\right)\) is

  1. \(\sin \left(\frac{y}{x}\right)=\frac{C}{x}\)
  2. \(\sin \left(\frac{y}{x}\right)=C x\)
  3. \(\sin \left(\frac{x}{y}\right)=C x\)
  4. \(\sin \left(\frac{x}{y}\right)=C y\)
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\sin \left(\frac{y}{x}\right)=C x\)

Solving Homogeneous Differential Equation Question 1 Detailed Solution

Calculation

Given equation: \(x\frac{dy}{dx} = y + x \tan(\frac{y}{x})\)

Divide by x: \(\frac{dy}{dx} = \frac{y}{x} + \tan(\frac{y}{x})\)

Let y = vx, then \(\frac{dy}{dx} = v + x\frac{dv}{dx}\)

Substitute in the equation:

\(v + x\frac{dv}{dx} = v + \tan(v)\)

⇒ \(x\frac{dv}{dx} = \tan(v)\)

⇒ \(\frac{dv}{\tan(v)} = \frac{dx}{x}\)

⇒ \(\cot(v) dv = \frac{dx}{x}\)

Integrate both sides:

\(\int \cot(v) dv = \int \frac{dx}{x}\)

⇒ \(\ln|\sin(v)| = \ln|x| + \ln|C|\)

⇒ \(\ln|\sin(v)| = \ln|Cx|\)

Remove the logarithms:

⇒ \(\sin(v) = Cx\)

Substitute v = y/x:

⇒ \(\sin(\frac{y}{x}) = Cx\)

∴ The general solution is \(\sin(\frac{y}{x}) = Cx\).

Hence option 2 is correct

Solving Homogeneous Differential Equation Question 2:

The general solution of differential equation \( \cfrac { dx }{ dy } =\cos { \left( x+y \right) } \) is

  1. \( \tan { \left( \cfrac { x+y }{ 2 } \right) } =y+c \)
  2. \( \tan { \left( \cfrac { x+y }{ 2 } \right) } =x+c \)
  3. \( \cot { \left( \cfrac { x+y }{ 2 } \right) } =y+c \)
  4. \( \cot { \left( \cfrac { x+y }{ 2 } \right) } =x+c \quad \)
  5. \( \cos { \left( \cfrac { x+y }{ 2 } \right) } =x+c \quad \)

Answer (Detailed Solution Below)

Option 1 : \( \tan { \left( \cfrac { x+y }{ 2 } \right) } =y+c \)

Solving Homogeneous Differential Equation Question 2 Detailed Solution

Calculation

\( \cfrac { dx }{ dy } =\cos { \left( x+y \right) } \)

Let \( x+y=v \implies \dfrac{dx}{dy}+1=\dfrac{dv}{dy} \)

⇒ \( \dfrac{dv}{dy}=1+\cos{v}=2\cos^2{\dfrac{v}{2}} \)

\(\Rightarrow \dfrac{dv}{\cos^2{\dfrac{v}{2}}}=2dy \)

⇒ \( \sec^2{\dfrac{v}{2}}dv=2dy \)

Integrating both sides:-

⇒ \( 2\tan{\dfrac{v}{2}}=2y+k \)

⇒ \( \tan{\left(\dfrac{x+y}{2}\right)}=y+c \)

Hence, option 1 is correct

Solving Homogeneous Differential Equation Question 3:

The solution of the differential equation \(\dfrac {dy}{dx} = \tan \left (\dfrac {y}{x}\right ) + \dfrac {y}{x}\) is:

  1. \(\cos \left (\dfrac {y}{x}\right ) = cx\)
  2. \(\sin \left (\dfrac {y}{x}\right ) = cx\)
  3. \(\cos \left (\dfrac {y}{x}\right ) = cy\)
  4. \(\sin \left (\dfrac {y}{x}\right ) = cy\)
  5. \(\tan \left (\dfrac {y}{x}\right ) = cy\)

Answer (Detailed Solution Below)

Option 2 : \(\sin \left (\dfrac {y}{x}\right ) = cx\)

Solving Homogeneous Differential Equation Question 3 Detailed Solution

Calculation

\(\dfrac {dy}{dx} = \tan \left (\dfrac {y}{x}\right ) + \left (\dfrac {y}{x}\right )\) ..... \((i)\)

Take, \(\dfrac {y}{x} = v\)

\(\implies y = vx\)

\(\implies \dfrac {dy}{dx} = v + x\dfrac {dv}{dx}\)

\(\therefore\) The given equation \((i)\) becomes

\(v + x\dfrac {dv}{dx} = \tan v + v\)

\(\implies \dfrac {1}{\tan v}dv = \dfrac {1}{x}dx\)

\(\implies \displaystyle \int \cot v\ dv = \int \dfrac {1}{x}dx\)

\(\implies \log |\sin v| = \log x + \log c=\log|xc|\)

\(\implies \sin v = xc\)

\(\therefore \sin \left (\dfrac {y}{x}\right ) = xc\)

Hence option 2 is correct

Solving Homogeneous Differential Equation Question 4:

The general solution of differential equation \( \cfrac { dx }{ dy } =\cos { \left( x+y \right) } \) is

  1. \( \tan { \left( \cfrac { x+y }{ 2 } \right) } =y+c \)
  2. \( \tan { \left( \cfrac { x+y }{ 2 } \right) } =x+c \)
  3. \( \cot { \left( \cfrac { x+y }{ 2 } \right) } =y+c \)
  4. \( \cot { \left( \cfrac { x+y }{ 2 } \right) } =x+c \quad \)
  5. None of these 

Answer (Detailed Solution Below)

Option 1 : \( \tan { \left( \cfrac { x+y }{ 2 } \right) } =y+c \)

Solving Homogeneous Differential Equation Question 4 Detailed Solution

Calculation

\( \cfrac { dx }{ dy } =\cos { \left( x+y \right) } \)

Let \( x+y=v \implies \dfrac{dx}{dy}+1=\dfrac{dv}{dy} \)

⇒ \( \dfrac{dv}{dy}=1+\cos{v}=2\cos^2{\dfrac{v}{2}} \)

\(\Rightarrow \dfrac{dv}{\cos^2{\dfrac{v}{2}}}=2dy \)

⇒ \( \sec^2{\dfrac{v}{2}}dv=2dy \)

Integrating both sides:-

⇒ \( 2\tan{\dfrac{v}{2}}=2y+k \)

⇒ \( \tan{\left(\dfrac{x+y}{2}\right)}=y+c \)

Hence, option 1 is correct

Solving Homogeneous Differential Equation Question 5:

The solution of \(x\, dy - y \, dx = \sqrt{x^2 + y^2} \, dx\)  when \(y\left(\sqrt{3}\right)\) = 1 is

  1. \(\ y^2 + \sqrt{x^2 + y^2} = x^2\)
  2. \(\ 5y - \sqrt{x^2 + y^2} = x^2\)
  3. \(\ y + \sqrt{x^2 + y^2} = x^2\)
  4. \(\ 5y^2 - \sqrt{x^2 + y^2} = x\)

Answer (Detailed Solution Below)

Option 3 : \(\ y + \sqrt{x^2 + y^2} = x^2\)

Solving Homogeneous Differential Equation Question 5 Detailed Solution

Calculation

\(x~dy-y~dx=\sqrt{x^{2}+y^{2}}dx\)

\(\frac{dy}{dx} - \frac{y}{x} = \sqrt{1+(\frac{y}{x})^2}\)

Let \(y=vx\), then \(\frac{dy}{dx} = v + x\frac{dv}{dx}\)

\(v + x\frac{dv}{dx} - v = \sqrt{1+v^2}\)

\(x\frac{dv}{dx} = \sqrt{1+v^2}\)

\(\frac{dv}{\sqrt{1+v^2}} = \frac{dx}{x}\)

Integrating both sides:

\(\int \frac{dv}{\sqrt{1+v^2}} = \int \frac{dx}{x}\)

\(\ln|v+\sqrt{1+v^2}| = \ln|x| + \ln C\)

\(v+\sqrt{1+v^2} = Cx\)

\(\frac{y}{x}+\sqrt{1+\frac{y^2}{x^2}} = Cx\)

\(y+\sqrt{x^2+y^2} = Cx^2\)

Given \(y(\sqrt{3})=1\), so

\(1+\sqrt{3+1} = C(\sqrt{3})^2\)

\(1+2 = 3C\)

\(C=1\)

\(y+\sqrt{x^2+y^2} = x^2\)

Hence option 3 is correct

Top Solving Homogeneous Differential Equation MCQ Objective Questions

The solution of \(\rm x^2{ dy\over dx}= x^2+xy+y^2\) will be

  1. \(\rm logx= tan^{-1}{y\over x}+c\)
  2. \(\rm logx= tan^{-1}{x\over y}+c\)
  3. \(\rm logy= tan^{-1}{x\over y}+c\)
  4. \(\rm logy= tan^{-1}{y\over x}+c\)

Answer (Detailed Solution Below)

Option 1 : \(\rm logx= tan^{-1}{y\over x}+c\)

Solving Homogeneous Differential Equation Question 6 Detailed Solution

Download Solution PDF

Concept:

Some useful formulas are:

\(\rm \int{ dx\over x}=logx+c\)

\(\rm \int{ dx \over {a^2+x^2}}={1\over a}tan^{-1}x+c\)

Calculation:

\(\rm x^2{ dy\over dx}= x^2+xy+y^2\)

\(\rm { dy\over dx}= 1+{y\over x}+({y\over x})^2\)

Substituting y = vx and  \(\rm {{dy}\over {dx}} = v+x {{dv}\over{dx}} \)

⇒ \(\rm v+x{ dv\over dx}= 1+v+v^2\)

⇒ \(\rm x{ dv\over dx}= 1+v^2\)

Integrating both sides we get,

\(\rm \int{ dx\over x}=\int{ dv \over {1+v^2}}\)

⇒ \(\rm logx= tan^{-1}v+c\), c = constant of integration

Putting the value of v we get,

∴ \(\rm \log x= tan^{-1}{y\over x}+c\)

The solution of \(\rm x {{dy}\over {dx}}=y+x\ tan {y\over x}\) is

  1. \(\rm y = c \sin{y\over x}\)
  2. \(\rm x = c \sin{x\over y}\)
  3. \(\rm y = c \sin{x\over y}\)
  4. \(\rm x = c \sin{y\over x}\)

Answer (Detailed Solution Below)

Option 4 : \(\rm x = c \sin{y\over x}\)

Solving Homogeneous Differential Equation Question 7 Detailed Solution

Download Solution PDF

Concept:

Some useful formulas are:

\(\rm \int{{dx}\over {x}}=log x+c\)

\(\rm \int{cot\ x\ dx}=log(sin\ x)+c\)

Calculation:

\(\rm x {{dy}\over {dx}}=y+x\ tan {y\over x}\)

Substituting y=vx and \(\rm v+x {{dv}\over{dx}} = {{dy}\over {dx}}\)

\(\rm x [v+x{{dv}\over {dx}}]=vx+x\ tan {v}\)

\(\rm x [v+x{{dv}\over {dx}}]=x(v+ tan {v})\)

\(\rm \int{{dx}\over {x}}=\int{{dv}\over tan {v}}\)

\(\rm \int{{dx}\over {x}}=\int{cotv\ dv}\)

log x = log (sinv) + log c

x = c sinv

Putting the value of v we get,

\(\rm x = c\sin{y\over x}\)             

[Where c = constant of integration]

The solution of \(\rm {{dy}\over {dx}} = {{x+y}\over {x-y}}\) is 

  1. \(\rm \log x = tan^{-1} {y\over x}-{1\over 2}log(1+({y\over x})^2)+c\)
  2. \( \log x = tan {y\over x}+{1\over 2}log(1+({y\over x})^2)+c\)
  3. \(\rm \log x = tan^{-1} {y\over x}+{1\over 2}log(1-({y\over x})^2)+c\)
  4. \(\rm \log x = tan {x\over y}+{1\over 2}log(1+({x\over y})^2)+c\)

Answer (Detailed Solution Below)

Option 1 : \(\rm \log x = tan^{-1} {y\over x}-{1\over 2}log(1+({y\over x})^2)+c\)

Solving Homogeneous Differential Equation Question 8 Detailed Solution

Download Solution PDF

Concept:

If a differential equation has the form f(x,y)dy = g(x,y)dx then it is said to be a homogeneous differential equation if the degree of f(x,y) and g(x, y) is the same.

Some useful formulas are;

\(\rm \int {1\over x} dx =ln\ x + C\)

\(\rm \int {1\over 1+x^2} dx =tan^{-1} x + C\)

Calculation:

\(\rm {{dy}\over {dx}} = {{x+y}\over {x-y}}\)

Taking y = vx where \(\rm {{dy}\over{dx}} = v+ x{{dv}\over{dx}}\) then we get

\(\rm v+ x{{dv}\over{dx}} = {{x+vx}\over {x-vx}}\)

\(\rm v+ x{{dv}\over{dx}} = {{x(1+v)}\over {x(1-v)}}\)

\(\rm x{{dv}\over{dx}} = {{1+v}\over {1-v}} -v\)

\(\rm x{{dv}\over{dx}} = {{1+v-v+v^2}\over {1-v}} \)

\(\rm {{dx}\over{x}} = {{1-v}\over {1+v^2}} dv\)

Integrating the above equation we get,

\(\rm \int{{dx}\over{x}} = \int{{1}\over {1+v^2}}dv- \int{{v}\over {1+v^2}}dv\)

\(\rm \log x = \tan^{-1} v-{1\over 2}log(1+v^2)+c\)

Now finally putting the value of (v = y/x) in the equation we get,

\(\rm \log x = tan^{-1} {y\over x}-{1\over 2}log(1+({y\over x})^2)+c\)

The solution of \(\rm {{dy}\over {dx}} = {{x+y}\over {x-y}}\) is 

  1. \(\rm \log x = tan^{-1} {y\over x}-{1\over 2}log(1+({y\over x})^2)+c\)
  2. \(\rm \log x = tan {y\over x}+{1\over 2}log(1+({y\over x})^2)+c\)
  3. \(\rm \log x = tan^{-1} {y\over x}+{1\over 2}log(1-({y\over x})^2)+c\)
  4. \(\rm \log x = tan {x\over y}+{1\over 2}log(1+({x\over y})^2)+c\)
  5. None of these

Answer (Detailed Solution Below)

Option 1 : \(\rm \log x = tan^{-1} {y\over x}-{1\over 2}log(1+({y\over x})^2)+c\)

Solving Homogeneous Differential Equation Question 9 Detailed Solution

Download Solution PDF

Concept:

If a differential equation has the form f(x,y)dy = g(x,y)dx then it is said to be a homogeneous differential equation if the degree of f(x,y) and g(x, y) is the same.

Some useful formulas are;

\(\rm \int {1\over x} dx =ln\ x + C\)

\(\rm \int {1\over 1+x^2} dx =tan^{-1} x + C\)

Calculation:

\(\rm {{dy}\over {dx}} = {{x+y}\over {x-y}}\)

Taking y = vx where \(\rm {{dy}\over{dx}} = v+ x{{dv}\over{dx}}\) then we get

\(\rm v+ x{{dv}\over{dx}} = {{x+vx}\over {x-vx}}\)

\(\rm v+ x{{dv}\over{dx}} = {{x(1+v)}\over {x(1-v)}} \)

\(\rm x{{dv}\over{dx}} = {{1+v}\over {1-v}} -v\)

\(\rm x{{dv}\over{dx}} = {{1+v-v+v^2}\over {1-v}} \)

\(\rm {{dx}\over{x}} = {{1-v}\over {1+v^2}} dv\)

Integrating the above equation we get,

\(\rm \int{{dx}\over{x}} = \int{{1}\over {1+v^2}}dv- \int{{v}\over {1+v^2}}dv\)

\(\rm \log x = \tan v^{-1}-{1\over 2}log(1+v^2)+c\)

Now finally putting the value of y in the equation we get,

\(\rm \log x = tan^{-1} {y\over x}-{1\over 2}log(1+({y\over x})^2)+c\)

The solution of \(\rm x^2{ dy\over dx}= x^2+xy+y^2\) will be

  1. \(\rm logy= tan^{-1}{y\over x}+c\)
  2. \(\rm logx= tan^{-1}{x\over y}+c\)
  3. \(\rm logy= tan^{-1}{x\over y}+c\)
  4.  \(\rm logx= tan^{-1}{y\over x}+c\)
  5. None of these

Answer (Detailed Solution Below)

Option 4 :  \(\rm logx= tan^{-1}{y\over x}+c\)

Solving Homogeneous Differential Equation Question 10 Detailed Solution

Download Solution PDF

Concept:

Some useful formulas are:

\(\rm \int{ dx\over x}=logx+c\)

\(\rm \int{ dx \over {a^2+x^2}}={1\over a}tan^{-1}x+c\)

Calculation:

\(\rm x^2{ dy\over dx}= x^2+xy+y^2\)

\(\rm { dy\over dx}= 1+{y\over x}+({y\over x})^2\)

Substituting y = vx and  \(\rm {{dy}\over {dx}} = v+x {{dv}\over{dx}} \)

⇒ \(\rm v+x{ dv\over dx}= 1+v+v^2\)

⇒ \(\rm x{ dv\over dx}= 1+v^2\)

Integrating both sides we get,

\(\rm \int{ dx\over x}=\int{ dv \over {1+v^2}}\)

⇒ \(\rm logx= tan^{-1}v+c\), c = constant of integration

Putting the value of v we get,

∴ \(\rm \log x= tan^{-1}{y\over x}+c\)

The solution of (xy + y2)dx = (x2- xy)dy is

  1. \(\rm \log x+ {2x\over y}-{1\over 2}\ {log{y\over x}} = c\)
  2. \(\rm \log x+ {2x\over y}+{1\over 2}\ {log{y\over x}} = c\)
  3. \(\rm \log x+ {x\over 2y}+{1\over 2}\ {log{y\over x}} = c\)
  4. \(\rm \log x- {x\over 2y}+{1\over 2}\ {log{y\over x}} = c\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \log x+ {x\over 2y}+{1\over 2}\ {log{y\over x}} = c\)

Solving Homogeneous Differential Equation Question 11 Detailed Solution

Download Solution PDF

Concept:

Some useful formulas are:

\(\rm\int {dx\over x} =log x+c\)

\(\rm ∫ x^n dx = \frac {(x^{n+1})} {(n+1)} +C; \ n≠1\)

Calculation:

(xy + y2)dx = (x- xy)dy

Dividing both sides by xwe get,

\(\rm[{ y\over x}+({y\over x})^2]dx=[1-{y\over x}]dy\)

Now substituting y = vx and \(\rm v+x {{dv}\over{dx}} = {{dy}\over {dx}}\)

\(\rm (v+v^2)dx=(1-v)dy\)

\(\rm {dy\over dx} ={{ (v+v^2)}\over{ (1-v)}}\)

\(\rm v+x {dv\over dx} ={{ (v+v^2)}\over{ (1-v)}}\)

\(\rm x {dv\over dx} ={{ (v+v^2-v+v^2)}\over{ (1-v)}}\)

\(\rm x {dv\over dx} ={{ 2v^2}\over{ (1-v)}}\)

Integrating the equation we get,

\(\rm\int {dx\over x} =\int{(1-v)dv\over {2v^2}}\)

\(\rm\int {dx\over x} =\int({{1\over {2v^2}}-{1\over {2v}}})dv\)

\(\rm \log x= {-1\over 2v}- {1\over 2}\log v+c\), c= constant of integration

Putting the value of v we get,

\(\rm \log x+ {x\over 2y}+{1\over 2}\ {log{y\over x}} = c\)

The solution of \(\rm x {{dy}\over {dx}}=y+x\ tan {y\over x}\) is

  1. \(\rm y = c \sin{y\over x}\)
  2. \(\rm x = c \cos{x\over y}\)
  3. \(\rm y = c \sin{x\over y}\)
  4. \(\rm x = c \sin{y\over x}\)
  5. \(\rm x = c \cos{y\over x}\)

Answer (Detailed Solution Below)

Option 4 : \(\rm x = c \sin{y\over x}\)

Solving Homogeneous Differential Equation Question 12 Detailed Solution

Download Solution PDF

Concept:

Some useful formulas are:

\(\rm \int{{dx}\over {x}}=log x+c\)

\(\rm \int{cot\ x\ dx}=log(sin\ x)+c\)

Calculation:

\(\rm x {{dy}\over {dx}}=y+x\ tan {y\over x}\)

Substituting y=vx and \(\rm v+x {{dv}\over{dx}} = {{dy}\over {dx}}\)

\(\rm x [v+x{{dv}\over {dx}}]=vx+x\ tan {v}\)

\(\rm x [v+x{{dv}\over {dx}}]=x(v+ tan {v})\)

\(\rm \int{{dx}\over {x}}=\int{{dv}\over tan {v}}\)

\(\rm \int{{dx}\over {x}}=\int{cotv\ dv}\)

log x = log (sinv) + log c

x = c sinv

Putting the value of v we get,

\(\rm x = c\sin{y\over x}\)

[Where c = constant of integration]

Solving Homogeneous Differential Equation Question 13:

If x(x + y + z) = 9, y(x + y + z) = 16, z(x + y + z) = 144, find the value of x.

  1. 169
  2. 0
  3. \(\frac{9}{13}\)
  4. 13

Answer (Detailed Solution Below)

Option 3 : \(\frac{9}{13}\)

Solving Homogeneous Differential Equation Question 13 Detailed Solution

Calculation:

x(x + y + z) = 9 ....(1)

y(x + y + z) = 16 ....(2)

z(x + y + z) = 144 .....(3)

By adding these three equations

x(x + y + z) + y(x + y + z) + z(x + y + z) = 9 + 16 + 144

⇒ (x + y + z)(x + y + z) = 169

⇒ (x + y + z)2 = 169

⇒ (x + y + z) = 13

From eq. (1)

⇒ x(x + y + z) = 9

⇒ x(13) = 9

⇒ x = \(\frac{9}{13}\)

Solving Homogeneous Differential Equation Question 14:

The solution of \(\rm x^2{ dy\over dx}= x^2+xy+y^2\) will be

  1. \(\rm logx= tan^{-1}{y\over x}+c\)
  2. \(\rm logx= tan^{-1}{x\over y}+c\)
  3. \(\rm logy= tan^{-1}{x\over y}+c\)
  4. \(\rm logy= tan^{-1}{y\over x}+c\)

Answer (Detailed Solution Below)

Option 1 : \(\rm logx= tan^{-1}{y\over x}+c\)

Solving Homogeneous Differential Equation Question 14 Detailed Solution

Concept:

Some useful formulas are:

\(\rm \int{ dx\over x}=logx+c\)

\(\rm \int{ dx \over {a^2+x^2}}={1\over a}tan^{-1}x+c\)

Calculation:

\(\rm x^2{ dy\over dx}= x^2+xy+y^2\)

\(\rm { dy\over dx}= 1+{y\over x}+({y\over x})^2\)

Substituting y = vx and  \(\rm {{dy}\over {dx}} = v+x {{dv}\over{dx}} \)

⇒ \(\rm v+x{ dv\over dx}= 1+v+v^2\)

⇒ \(\rm x{ dv\over dx}= 1+v^2\)

Integrating both sides we get,

\(\rm \int{ dx\over x}=\int{ dv \over {1+v^2}}\)

⇒ \(\rm logx= tan^{-1}v+c\), c = constant of integration

Putting the value of v we get,

∴ \(\rm \log x= tan^{-1}{y\over x}+c\)

Solving Homogeneous Differential Equation Question 15:

The solution of the differential equation \(\frac{{dy}}{{dx}} = \frac{y}{x} + \frac{{f\left( {\frac{y}{x}} \right)}}{{f'\left( {\frac{y}{x}} \right)}}\)is (where C is an arbitrary constant)

  1. \(x.f\left( {\frac{y}{x}} \right) = C\)
  2. \(f\left( {\frac{y}{x}} \right) = Cx\)
  3. \(y.f\left( {\frac{y}{x}} \right) = C\)
  4. \(f\left( {\frac{y}{x}} \right) = Cy\)

Answer (Detailed Solution Below)

Option 2 : \(f\left( {\frac{y}{x}} \right) = Cx\)

Solving Homogeneous Differential Equation Question 15 Detailed Solution

Given:

\(\frac{{dy}}{{dx}} = \frac{y}{x} + \frac{{f\left( {\frac{y}{x}} \right)}}{{f'\left( {\frac{y}{x}} \right)}}\)

Concept:

To solve such type of differential equations, simply put y = vx.

Calculation:

Putting y = vx

⇒ \(\frac{dy}{dx} = v + x\frac{dv}{dx} \) 

Now, \(\frac{{dy}}{{dx}} = \frac{y}{x} + \frac{{f\left( {\frac{y}{x}} \right)}}{{f'\left( {\frac{y}{x}} \right)}}\)

⇒ \( v + x\frac{dv}{dx} \) = v + \(\frac{f(v)}{f'(v)}\)

⇒ \(\frac{f'(v)}{f(v)}dv\) = \(\frac{dx}{x}\)

Integrating both sides -

⇒ ln|f(v)| = ln|x| + lnC

⇒ f(v) = Cx

putting v = y/x back,

⇒ f(y/x) = Cx

Get Free Access Now
Hot Links: teen patti joy official teen patti noble teen patti refer earn teen patti live happy teen patti