Solving Homogeneous Differential Equation MCQ Quiz in தமிழ் - Objective Question with Answer for Solving Homogeneous Differential Equation - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Apr 3, 2025

பெறு Solving Homogeneous Differential Equation பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Solving Homogeneous Differential Equation MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Solving Homogeneous Differential Equation MCQ Objective Questions

Top Solving Homogeneous Differential Equation MCQ Objective Questions

Solving Homogeneous Differential Equation Question 1:

The curve satisfying the differential equation, \((x^{2} - y^{2})dx + 2xydy = 0\) and passing through the point \((1, 1)\) is :

  1. a circle of radius two.
  2. a circle of radius one.
  3. a hyperbola.
  4. an ellipse.

Answer (Detailed Solution Below)

Option 2 : a circle of radius one.

Solving Homogeneous Differential Equation Question 1 Detailed Solution

Calculation

\((x^2-y^2)dx+2xydy=0\)

\(\Rightarrow \dfrac{dy}{dx}=\dfrac{y^2-x^2}{2xy}\)

Put \(y=vx\)  ⇒ \(\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}\)

\(\Rightarrow v+x\dfrac{dv}{dx}=\dfrac{v^2x^2-x^2}{2vx^2}\)

\(\Rightarrow v+x\dfrac{dv}{dx}=\dfrac{v^2-1}{2v}\)

\(\Rightarrow x\dfrac{dv}{dx}=\dfrac{-v^2-1}{2v}\)

\(\Rightarrow \dfrac{2vdv}{v^2+1}=-\dfrac{dx}{x}\)

Integrating we get;

⇒ \(ln\vert v^2+1\vert=-ln\vert x\vert+lnc\)

⇒ \(\dfrac{y^2}{x^2}+1=\dfrac{c}{x}\)

Putting (1,1)

⇒ \(c=2\)

⇒ \(x^2+y^2-2x=0\)

hence its is a circle of radius 1

Hence option 2 is correct

Solving Homogeneous Differential Equation Question 2:

Let f(x) = \(\left.\sqrt{\lim _{x \rightarrow x}\left\{\left.\frac{2 r^2\left[(f(r))^2-f(x) f(r)\right]}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}} \right\rvert\,\right.}\right\}\) be differentiable in (-∞, 0) ∪ (0, ∞) and f(1) = 1. Then the value of ea, such that f(a) = 0, is equal to _____. 

Answer (Detailed Solution Below) 2

Solving Homogeneous Differential Equation Question 2 Detailed Solution

Calculation

Given

f(1) = 1,  f(a) = 0 

f(x) = \(\left.\sqrt{\lim _{x \rightarrow x}\left\{\left.\frac{2 r^2\left[(f(r))^2-f(x) f(r)\right]}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}} \right\rvert\,\right.}\right\}\)

⇒ \(f^2(x)=\operatorname{Lim}_{r \rightarrow x}\left(\frac{2 r^2\left(f^2(r)-f(x) f(r)\right)}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}}\right)\)

⇒  \(\operatorname{Lim}_{r \rightarrow x}\left(\frac{2 r^2 f(r)}{r+x} \frac{(f(r)-f(x))}{r-x}-r^3 e^{\frac{f(r)}{r}}\right)\)

⇒ \(f^2(x)=\frac{2 x^2 f(x)}{2 x} f^{\prime}(x)-x^3 e^{\frac{f(x)}{x}}\)

⇒ \(y^2=x y \frac{d y}{d x}-x^3 e^{\frac{y}{x}}\)

⇒ \(\frac{y}{x}=\frac{d y}{d x}-\frac{x^2}{y} e^{\frac{y}{x}}\)

Put \(y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}\)

⇒ \(v=v+x \frac{d v}{d x}-\frac{x}{v} e^v\)

⇒ \(\frac{d v}{d x}=\frac{e^v}{v} \Rightarrow e^{-v} v d v=d x\)

Integrating both side 

⇒ ev (x + c) + 1 + v = 0 

For f(1) = 1 ⇒ c = \(-1-\frac{2}{e} \)

⇒ \(e^v\left(-1-\frac{2}{e}+x\right)+1+v=0 \)

⇒ \(e^{\frac{y}{x}}\left(-1-\frac{2}{e}+x\right)+1+\frac{y}{x}=0 \)

For \( x=a, y=0 \Rightarrow a=\frac{2}{e} \)

⇒ ae = 2 

Solving Homogeneous Differential Equation Question 3:

If the solution curve, of the differential equation \( \frac{d y}{d x}=\frac{x+y-2}{x-y}\)  passing through the point (2, 1) is \( \tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{β} \log _e\left(α+\left(\frac{y-1}{x-1}\right)^2\right)=\log _e|x-1| \) , then 5β + α  is equal to

Answer (Detailed Solution Below) 11

Solving Homogeneous Differential Equation Question 3 Detailed Solution

Calculation

Given

\(\frac{d y}{d x}=\frac{x+y-2}{x-y}\)

Let x = X + h, y = Y + k

⇒ \(\frac{d Y}{d X}=\frac{X+Y}{X-Y}\)

\(\left.\begin{array}{l} \mathrm{h}+\mathrm{k}-2=0 \\ \mathrm{~h}-\mathrm{k}=0 \end{array}\right\} \mathrm{h}=\mathrm{k}=1\)

Let Y = vX

⇒ \(v+\frac{d v}{d X}=\frac{1+v}{1-v} \Rightarrow X-\frac{d v}{d X}=\frac{1+v^2}{1-v}\)

⇒ \(\frac{1-v}{1+v^2} d v=\frac{d X}{X}\)

⇒ \(\tan ^{-1} v-\frac{1}{2} \ln \left(1+v^2\right)=\ln |X|+C\)

⇒ \(\tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{2} \ln \left(1+\left(\frac{y-1}{x-1}\right)^2\right)=\ln |x-1| +C\)

As curve is passing through (2, 1) ⇒ C = 0

⇒ \(\tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{2} \ln \left(1+\left(\frac{y-1}{x-1}\right)^2\right)=\ln |x-1|\)

∴ α = 1 and β = 2

5β + α = 11

Solving Homogeneous Differential Equation Question 4:

The solution curve of the differential equation \(\rm y\frac{dx}{dy}=x(\log_e x-\log_e y+1), x >0, y>0\) passing through the point (e, 1) is 

  1. \(\rm \left|\log_e\frac{y}{x}\right|=x\)
  2. \(\rm \left|\log_e\frac{y}{x}\right|=y^2\)
  3. \(\rm \left|\log_e\frac{x}{y}\right|=y\)
  4. \(\rm 2\left|\log_e\frac{x}{y}\right|=y+1\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \left|\log_e\frac{x}{y}\right|=y\)

Solving Homogeneous Differential Equation Question 4 Detailed Solution

Calculation

Given

\(\rm y\frac{dx}{dy}=x(\log_e x-\log_e y+1)\)

⇒ \(\rm \frac{dx}{dy}=\frac{x}{y}(\log_e \frac{x}{y}+1)\)

Put \(\frac{x}{y}=v\)

⇒ \(\rm v+y \frac{dv}{dy}=v(\log_e v+1)\)

⇒ \(y \frac{dv}{dy}=v\log_e v\)

⇒ \(\frac{1}{v\log_e v}dv=\frac{dy}{y}\)

⇒ \(\int\frac{dv}{vlog_ev}=\int\frac{dy}{y}\)

⇒ \(log_e|log_ev|=log_e(y) +log_ec\)

⇒ cy = \(|log_e\frac{x}{y}|\)

Put x = e , y = 1 ⇒ c = 1

⇒ y = \(|log_e\frac{x}{y}|\)
Hence option 3 is correct

Solving Homogeneous Differential Equation Question 5:

The Sol. of the differential equation xy2dy - (x3 + y3)dx = 0 is

  1. y3 = 3x3 + c
  2. y3 = 3x3 log(cx)
  3. y3 = 3x3 + log(cx)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : y3 = 3x3 log(cx)

Solving Homogeneous Differential Equation Question 5 Detailed Solution

Given, xy2dy - (x3 + y3)dx = 0 

⇒ xy2dy = (x3 + y3)dx

⇒ \({ dy \over dx } = {x^3 + y^3 \over xy^2}\)

⇒ \({ dy \over dx } = ({x\over y})^2 +{ y \over x}\)

Put y = vx → \({dy \over dx } = v + x {dv \over dx}\)

⇒ \(v + x {dv \over dx} = {1 \over v^2} + v \)

⇒ \(x {dv \over dx} = {1 \over v^2} \)
⇒ \(v^2 dv = {dx \over x} \)
Integrating both sides,
⇒ \(\int v^2 dv = \int{dx \over x} \)
⇒ \({v^3 \over 3} = \log x + \log c\)
⇒ y3 = 3x3 log(cx)
∴ The correct answer is option (2).

Solving Homogeneous Differential Equation Question 6:

The solution of the differential equation x dy - y dx = \(\sqrt{(x^2+y^2)}dx\) is

  1. \(y-\sqrt{x^2+y^2}=cx^2\)
  2. \(y+\sqrt{x^2+y^2}=cx^2\)
  3. \(y+\sqrt{x^2+y^2}+cx^2= 0\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : \(y+\sqrt{x^2+y^2}=cx^2\)

Solving Homogeneous Differential Equation Question 6 Detailed Solution

Given, x dy - y dx = \(\sqrt{(x^2+y^2)}dx\)

⇒ x dy = y dx + \(\sqrt{(x^2+y^2)}dx\) 

⇒ \(\frac{dy}{dx}=\frac{y + \sqrt{(x^2+y^2)}}{x}\)

 \(\frac{dy}{dx}= { y \over x}+{ \sqrt{1+({y \over x})^2}}\)

Put y = vx →  \({dy \over dx } = v + x {dv \over dx}\)

⇒ \(v + x {dv \over dx} = v + \sqrt { 1+ v^2}\)

⇒ \(x {dv \over dx} = \sqrt { 1+ v^2}\)

⇒ \( {dv \over\sqrt{ 1+ v^2}} ={dx \over x}\)

Integrating both sides, 

⇒ \(\int {dv \over\sqrt{ 1+ v^2}} =\int{dx \over x}\)d

⇒ \(\log ({v+ \sqrt{ 1+ v^2} }) =\log x + \log c\)

⇒ \( {{y \over x}+ \sqrt{ 1+({y \over x})^2} } =cx\)

⇒ \(y + \sqrt{ x ^2 + y^2} =cx^2\)

∴ The correct answer is option (2).

Solving Homogeneous Differential Equation Question 7:

The Sol. of the differential equation xy2dy - (x3 + y3)dx = 0 is

  1. y3 = 3x3 + c
  2. y3 = 3x3 log(cx)
  3. y3 = 3x3 + log(cx)
  4. y3 + 3x3 = log(cx)

Answer (Detailed Solution Below)

Option 2 : y3 = 3x3 log(cx)

Solving Homogeneous Differential Equation Question 7 Detailed Solution

Given, xy2dy - (x3 + y3)dx = 0 

⇒ xy2dy = (x3 + y3)dx

⇒ \({ dy \over dx } = {x^3 + y^3 \over xy^2}\)

⇒ \({ dy \over dx } = ({x\over y})^2 +{ y \over x}\)

Put y = vx → \({dy \over dx } = v + x {dv \over dx}\)

⇒ \(v + x {dv \over dx} = {1 \over v^2} + v \)

⇒ \(x {dv \over dx} = {1 \over v^2} \)
⇒ \(v^2 dv = {dx \over x} \)
Integrating both sides,
⇒ \(\int v^2 dv = \int{dx \over x} \)
⇒ \({v^3 \over 3} = \log x + \log c\)
⇒ y3 = 3x3 log(cx)
∴ The correct answer is option (2).

Solving Homogeneous Differential Equation Question 8:

The solution of the differential equation \(\frac{\mathrm{dy}}{\mathrm{dx}}=-\left(\frac{\mathrm{x}^{2}+3 \mathrm{y}^{2}}{3 \mathrm{x}^{2}+\mathrm{y}^{2}}\right)\), y(1) = 0 is

  1. \(\rm \log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0 \)
  2. \(\rm \log _{e}|x+y|+\frac{x y}{(x+y)^{2}}=0 \)
  3. \(\rm \log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0 \)
  4. \(\rm ​\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0 \)

Solving Homogeneous Differential Equation Question 8 Detailed Solution

Calculation:

We wish to solve the differential equation

\( \displaystyle \frac{dy}{dx} = -\frac{x^2+3y^2}{3x^2+y^2},\quad y(1)=0. \)

Since both numerator and denominator are homogeneous of degree 2, set

\( y = u\,x,\quad u = \frac{y}{x} \;\longrightarrow\; \frac{dy}{dx} = u + x\frac{du}{dx}. \)

Substituting gives

\( u + x\frac{du}{dx} = -\frac{1+3u^2}{3+u^2} \;\Longrightarrow\; x\frac{du}{dx} = -\frac{1+3u^2}{3+u^2} - u = -\frac{(u+1)^3}{3+u^2}. \)

Separate variables:

\( \displaystyle \int \frac{3+u^2}{(u+1)^3}\,du = -\int \frac{dx}{x}. \)

Notice the partial‐fraction expansion

\( \displaystyle \frac{3+u^2}{(u+1)^3} = \frac{1}{u+1} - \frac{2}{(u+1)^2} + \frac{4}{(u+1)^3}. \)

Hence

\( \displaystyle \int \frac{3+u^2}{(u+1)^3}\,du = \ln|u+1| + \frac{2}{u+1} - \frac{2}{(u+1)^2}. \)

So

\( \displaystyle \ln|u+1| + \frac{2}{u+1} - \frac{2}{(u+1)^2} = -\ln|x| + C. \)

Since \\(u+1 = \frac{x+y}{x} \)), we rewrite in terms of x+y:

\( \displaystyle \ln|x+y| + \frac{2\,x\,y}{(x+y)^2} = C. \)

Apply the initial condition y(1)=0 to get (C=0). Therefore the solution is

\( \displaystyle \ln\lvert x+y\rvert \;+\;\frac{2xy}{(x+y)^2} = 0. \)

Hence, the correct answer is Option 3. 

Solving Homogeneous Differential Equation Question 9:

The general solution of the differential equation \(x \frac{d y}{d x}=y+x \tan \left(\frac{y}{x}\right)\) is

  1. \(\sin \left(\frac{y}{x}\right)=\frac{C}{x}\)
  2. \(\sin \left(\frac{y}{x}\right)=C x\)
  3. \(\sin \left(\frac{x}{y}\right)=C x\)
  4. \(\sin \left(\frac{x}{y}\right)=C y\)
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\sin \left(\frac{y}{x}\right)=C x\)

Solving Homogeneous Differential Equation Question 9 Detailed Solution

Calculation

Given equation: \(x\frac{dy}{dx} = y + x \tan(\frac{y}{x})\)

Divide by x: \(\frac{dy}{dx} = \frac{y}{x} + \tan(\frac{y}{x})\)

Let y = vx, then \(\frac{dy}{dx} = v + x\frac{dv}{dx}\)

Substitute in the equation:

\(v + x\frac{dv}{dx} = v + \tan(v)\)

⇒ \(x\frac{dv}{dx} = \tan(v)\)

⇒ \(\frac{dv}{\tan(v)} = \frac{dx}{x}\)

⇒ \(\cot(v) dv = \frac{dx}{x}\)

Integrate both sides:

\(\int \cot(v) dv = \int \frac{dx}{x}\)

⇒ \(\ln|\sin(v)| = \ln|x| + \ln|C|\)

⇒ \(\ln|\sin(v)| = \ln|Cx|\)

Remove the logarithms:

⇒ \(\sin(v) = Cx\)

Substitute v = y/x:

⇒ \(\sin(\frac{y}{x}) = Cx\)

∴ The general solution is \(\sin(\frac{y}{x}) = Cx\).

Hence option 2 is correct

Solving Homogeneous Differential Equation Question 10:

The general solution of the differential equation \(\rm x\cos \frac{y}{x}\left( {y\,dx + x\,dy} \right) = y\sin \frac{y}{x}\left( {x\,dy - y\,dx} \right) \) is

  1. \(\log(xy)=\log\cos\frac{x}{y}+C\)
  2. \(\cos \left( {\frac{y}{x}} \right) = \frac{C}{{xy}} \)
  3. \(\log(xy)=\log\sec\frac{x}{y}+C\)
  4. x + y + C = 0
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\cos \left( {\frac{y}{x}} \right) = \frac{C}{{xy}} \)

Solving Homogeneous Differential Equation Question 10 Detailed Solution

Concept:

If \(\rm\frac{dy}{dx}=f(x,y)\) is a homogeneous differential equation, put y = vx,

Then substitute \(\rm\frac{dy}{dx}=v + x\frac{dv}{dx}\).

Calculation:

Given \(\rm x\cos \frac{y}{x}\left( {y\,dx + x\,dy} \right) = y\sin \frac{y}{x}\left( {x\,dy - y\,dx} \right) \)

⇒ \(\rm xy\cos \frac{y}{x}dx+x^2\cos \frac{y}{x}dy = xy\sin \frac{y}{x}dy-y^2\sin \frac{y}{x}dx\)

⇒ (xy cos\(\rm\frac{y}{x}\) + y2 sin \(\rm\frac{y}{x}\))dx = (xy sin\(\rm\frac{y}{x}\) - x2 cos \(\rm\frac{y}{x}\))dy

⇒ \(\rm\frac{dy}{dx}=\frac{xy\cos\frac{y}{x}+y^2\sin\frac{y}{x}}{xy\sin\frac{y}{x}-x^2\cos\frac{y}{x}}\)

Dividing the numerator and denominator of R.H.S by x2.

⇒ \(\rm\frac{dy}{dx}=\frac{\frac{y}{x}\cos\frac{y}{x}+\frac{y^2}{x^2}\sin\frac{y}{x}}{\frac{y}{x}\sin\frac{y}{x}-\cos\frac{y}{x}}\)

Put y = vx

⇒ \(\rm\frac{dy}{dx}=v+x\frac{dv}{dx}\)

∴ Rewriting the equation, we get:

v + x\(\rm\frac{dv}{dx}\) = \(\rm\frac{v\cos v + v^2\sin v}{v\sin v-\cos v}\)

⇒  x\(\rm\frac{dv}{dx}\) = \(\rm\frac{2v\cos v }{v\sin v-\cos v}\)

⇒ \(\rm\frac{v\sin v-\cos v}{v\cos v}dv=2\frac{dx}{x}\)

Integrating both sides, we get:

⇒ \(\rm\int\frac{v\sin v-\cos v}{v\cos v}dv=2\int\frac{dx}{x}\)

⇒ \(\rm\int(\tan v-\frac{1}{v})dv=2\int\frac{dx}{x}\)

⇒ log |sec v| - log |v| = 2 log |x| + log k.

⇒ log \(\rm\left|\frac{\sec \frac{y}{x}}{\frac{y}{x}}\right|\) = log |x2| + log k.

⇒  log \(\rm\left|\frac{\sec \frac{y}{x}}{\frac{y}{x}}\right|\) - log |x2| = log k.

⇒ log \(\rm\left|\frac{\sec \frac{y}{x}}{\frac{y}{x}\times x^2}\right|\) = log k.

⇒ log \(\rm\left|\frac{\sec \frac{y}{x}}{yx}\right|\) = log k

⇒ \(\rm\frac{\sec \frac{y}{x}}{yx}=k\)

⇒ sec \(\rm\frac{y}{x}\) = kxy

⇒ \(\rm\cos \left( {\frac{y}{x}} \right) = \frac{C}{{xy}} \)

Get Free Access Now
Hot Links: teen patti master 2025 teen patti master apk download teen patti master 2024 teen patti jodi