Using Variable Separable Method MCQ Quiz - Objective Question with Answer for Using Variable Separable Method - Download Free PDF

Last updated on Jun 27, 2025

Latest Using Variable Separable Method MCQ Objective Questions

Using Variable Separable Method Question 1:

Let y = y(x) be the solution curve of the differential equation dydx=yx(1+xy2(1+logex)), x > 0, y(1) = 3. Then y2(x)9 is equal to :  

  1. x252x3(2+logex3)
  2. x22x3(2+logex3)3
  3. x23x3(1+logex2)2
  4. x273x3(2+logex2)

Answer (Detailed Solution Below)

Option 1 : x252x3(2+logex3)

Using Variable Separable Method Question 1 Detailed Solution

Calculation: 

dydxyx=y3(1+logex)

⇒ 1y3dydx1xy2=1+logex

Let 1y2=t2y3dydx=dtdx

∴ dtdx+2tx=2(1+logex)

 I.F. =e2xdx=x2

⇒ x2y2=23((1+logex)x3x33)+C

y(1) = 3

y29=x252x3(2+logex3)

Hence, the correct answer is Option 1. 

Using Variable Separable Method Question 2:

The particular solution of the differential equation (y - x2y)dy = (1 - x3)dx with y(0) = 1, is:

  1. y2 = x+ 2 loge|1 + x| + 1
  2. y2=1+x2+2loge|1+x2|
  3. y= x+ 2x - 3
  4. y= x+ 2x + 1

Answer (Detailed Solution Below)

Option 1 : y2 = x+ 2 loge|1 + x| + 1

Using Variable Separable Method Question 2 Detailed Solution

Concept:

First Order Differential Equation:

  • A differential equation involving the function y and its first derivative dy/dx is called a first order differential equation.
  • Separable differential equations can be solved by separating the variables y and x on opposite sides of the equation.
  • Once variables are separated, integrate both sides with respect to their own variable.
  • Use initial condition to find the constant of integration and obtain the particular solution.

Logarithmic Function:

  • The natural logarithm function is denoted as loge or ln.
  • Important identity: ∫(1/x) dx = loge|x| + C

 

Calculation:

Given, y(0) = 1

Equation: (y − x2y) dy = (1 − x3) dx

⇒ y(1 − x2) dy = (1 − x3) dx

⇒ y dy = [(1 − x3)/(1 − x2)] dx

⇒ y dy = [(1 + x + x2)/(1 + x)] dx

⇒ y dy = x + (1/(1 + x)) dx

Integrate both sides,

⇒ ∫ y dy = ∫ (x + 1/(1 + x)) dx

⇒ y2/2 = x2/2 + loge|1 + x| + C

⇒ y2 = x2 + 2 loge|1 + x| + C′

Apply initial condition: x = 0, y = 1

⇒ (1)2 = 0 + 2 loge(1) + C′

⇒ 1 = 0 + 0 + C′

⇒ C′ = 1

∴ Hence, the particular solution is y2 = x2 + 2 loge|1 + x| + 1

Using Variable Separable Method Question 3:

Let x = x(y) be the solution of the differential equation

y=(xydxdy)sin(xy),y>0 and x(1)=π2.

Then cos(x(2)) is equal to :

  1. 1 – 2(loge 2)
  2. 2(loge 2)2 – 1 
  3. 2(loge 2) – 1 
  4. 1 – 2(loge 2) 

Answer (Detailed Solution Below)

Option 2 : 2(loge 2)2 – 1 

Using Variable Separable Method Question 3 Detailed Solution

Calculation

ydy=(xdyydx)sin(xy)

⇒ dyy=(xdyydxy2)sin(xy)

⇒ dyy=sin(xy)d(xy)

⇒ ny=cosxy+C

x(1)=π20=cosπ2+CC=0

⇒ ny=cosxy

 but y=2cosx2=ln2

⇒ cosx=2cos2x21

= 2(ℓn2)2 – 1 

Hence option 2 is correct

Using Variable Separable Method Question 4:

Particular solution of the differential equation dydx=4xy2, Given that y = 1, where x = 0 is:

  1. y=12x2+1
  2. x=12y2+1
  3. y = 2x2 + 1
  4. y=x2x2+1

Answer (Detailed Solution Below)

Option 1 : y=12x2+1

Using Variable Separable Method Question 4 Detailed Solution

Calculation

Given:  dydx=4xy2

:⇒ dyy2=4xdx

Integrate both sides:

y2dy=4xdx

y11=4x22+C

1y=2x2+C

1y=2x2C

Given that y=1 when x=0:

11=2(0)2C

1=C

C=1

Substitute C=1 into the equation:

1y=2x2(1)

1y=2x2+1

y=12x2+1

Hence option 1 is correct.

Using Variable Separable Method Question 5:

The number of solutions of dydx=y+1x1, when y(1) = 2 is

  1. none
  2. one 
  3. two 
  4. infinite

Answer (Detailed Solution Below)

Option 2 : one 

Using Variable Separable Method Question 5 Detailed Solution

Calculation

Since, dydx=y+1x1

⇒ dyy+1=dxx1

After integrating on both sides, we have

log(y + 1) = log(x - 1) - log C

C(y + 1) = (x - 1)

C = x1y+1

If x = 1, then y = 2, so C = 0.

Therefore, x - 1 = 0

Hence, there is only one solution.

Hence option 2 is correct

Top Using Variable Separable Method MCQ Objective Questions

The solution of the differential equation dy = (1 + y2) dx is

  1. y = tan x + c
  2. y = tan (x + c)
  3. tan-1 (y + c) = x
  4. tan-1 (y + c) = 2x

Answer (Detailed Solution Below)

Option 2 : y = tan (x + c)

Using Variable Separable Method Question 6 Detailed Solution

Download Solution PDF

Concept:

dx1+x2=tan1x+c

Calculation:

Given: dy = (1 + y2) dx

dy1+y2=dx

Integrating both sides, we get

dy1+y2=dxtan1y=x+c

⇒ y = tan (x + c)

∴ The solution of the given differential equation is y = tan (x + c).

What is the solution of the differential equation ln(dydx)a=0?

  1. y = xea + c
  2. x = yea + c
  3. y = In x + c
  4. x = In y + c

Answer (Detailed Solution Below)

Option 1 : y = xea + c

Using Variable Separable Method Question 7 Detailed Solution

Download Solution PDF

Calculation:

Given: ln(dydx)a=0

ln(dydx)=a

dydx=ea

dydx=ea

On integrating both sides, we get

⇒ y = xea + c

Find general solution of (xydydx1)=0

  1. xy = log x + c
  2. x22=logy+c
  3. y22=logx+c
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : y22=logx+c

Using Variable Separable Method Question 8 Detailed Solution

Download Solution PDF

Concept:

1xdx=logx+c

xndx=xn+1n+1+c

 

Calculation:

Given: (xydydx1)=0

xydydx=1

ydy=dxx

Integrating both sides, we get

y22=logx+c

The solution of differential equation  dy=(4+y2)dx is 

  1. y=2tan(x+C)
  2. y=2tan(2x+C)
  3. 2y=tan(2x+C)
  4. 2y=2tan(x+C)

Answer (Detailed Solution Below)

Option 2 : y=2tan(2x+C)

Using Variable Separable Method Question 9 Detailed Solution

Download Solution PDF

Concept: 

1a2+x2dx=1atan1xa+C 

Calculation: 

Given : dy=(4+y2)dx 

⇒ dy4+y2=dx 

Integrating both sides, we get 

dy22+y2=dx

⇒ 12tan1y2=x+c 

⇒ tan1y2=2x+2c

⇒ tan1y2=2x+C  [∵ 2c = C]

⇒ y2=tan(2x+C)

 y=2tan(2x+C) 

The correct option is 2 . 

The solution of dxdt=3x+8 will be

  1. x=13e(t+c)38
  2. x=13e3(t+c)83
  3. x=13e(t+c)+38
  4. x=13e(t+c)+83

Answer (Detailed Solution Below)

Option 2 : x=13e3(t+c)83

Using Variable Separable Method Question 10 Detailed Solution

Download Solution PDF

Concept:

Some useful formulas are:

dxax=1alogx+c

If log x = z then we can write x = ez

Calculation:

dxdt=3x+8

Rearranging the equation and integrating we get,

dx3x+8=dt

13log(3x+8)=t+c, c = constant of integration

⇒ log(3x + 8) = 3(t + c)

⇒ 3x + 8 = e3(t+c) 

⇒ 3x = e3(t+c) - 8

∴ x=13e3(t+c)83

The solution of the differential equation dy = 1y2 dx is

  1. y = sin x + c
  2. y = sin (x + c)
  3. sin-1 (y + x) = c
  4. sin-1 (y + c) = x

Answer (Detailed Solution Below)

Option 2 : y = sin (x + c)

Using Variable Separable Method Question 11 Detailed Solution

Download Solution PDF

Concept:

dxa2x2=sin1xa 

Calculation:

Given: dy = 1y2 dx 

⇒ dy12y2=dx 

Integrating both sides, we get

⇒ dy12y2=dx 

⇒ sin1(y) = x + c 

⇒ y = sin ( x + c ) . 

The correct option is 2.

The solution of the differential equation ydydx = x + 1 is

  1. y2 - x2 + 2x - c = 0
  2. y2 + x2 - 2x - c = 0
  3. y2 - x2 - 2x - c = 0
  4. None of these

Answer (Detailed Solution Below)

Option 3 : y2 - x2 - 2x - c = 0

Using Variable Separable Method Question 12 Detailed Solution

Download Solution PDF

Calculation:

Given: ​ydydx=x+1

⇒ ydy = (x + 1) dx

Integrating both sides, we get

⇒ ∫ ydy = ∫ (x + 1) dx

⇒ y22=x22+x+c

⇒ y2 = x2 + 2x + 2c

∴ y2 - x2 - 2x - c = 0

Please note: c is constant here, so 2c can be also considered as a constant. 

Find general solution of dxdy=(1+x2)(1+y2)

  1. tan1y=x+x33+c
  2. y+y33=tan1x+c
  3. tan1y=tan1x+c
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : y+y33=tan1x+c

Using Variable Separable Method Question 13 Detailed Solution

Download Solution PDF

Concept:

1a2+x2dx=1atan1xa+c

xndx=xn+1n+1+c

 

Calculation:

Given: dxdy=(1+x2)(1+y2)

dx(1+x2)=(1+y2)dy

(1+y2)dy=dx(1+x2)

Integrating both sides, we get

(1+y2)dy=dx(1+x2)

y+y33=tan1x+c

If dydx4y=0, find the solution of the differential equation if, y(0) = 1

  1. y = 4ex
  2. y = e4x
  3. y = e-4x
  4. y = ex + 4

Answer (Detailed Solution Below)

Option 2 : y = e4x

Using Variable Separable Method Question 14 Detailed Solution

Download Solution PDF

Concept:

For first-order differential equation, separate the variable and integrate accordingly.

Put the given condition to find out the integration constant

Calculation:

Given differential equation 

dydx4y=0

⇒ dyy=4dx

Integrating both sides

⇒ dyy=4dx

⇒ ln y = 4x + c

⇒ y = e4x + c

Now y(0) = 1

⇒ 1 = e0 + c

⇒ c = 0

∴ y = e4x

The general solution of the differential equation ydxxdyx=0 is

  1. xy = c
  2. x = cy2
  3. y - cx = 0
  4. None of these 

Answer (Detailed Solution Below)

Option 3 : y - cx = 0

Using Variable Separable Method Question 15 Detailed Solution

Download Solution PDF

Concept:

Differential Equations by Variable Separable Method

If the coefficient of dx is only function of x and coefficient of dy is only a function of y in the given differential equation then we can separate both dx and dy terms and integrate both separately.

f(x)dx=g(y)dy

 

Calculation:

To Find: Solution of the differential equation

ydxxdyx=0

⇒ ydx - xdy = 0

⇒ ydx = xdy 

⇒ dyy=dxx

Integrating both sides, we get

dyy=dxxlny=lnx+lnc   

ln(y)=lncx                   (∵ ln x + ln y = ln (xy))

⇒ y = cx 

∴ y - cx = 0

Get Free Access Now
Hot Links: teen patti real cash teen patti comfun card online teen patti real cash game