tan2α = \(\rm\frac{2 tan \alpha}{1-tan^{2}\alpha}\) सर्वसमिका का प्रयोग करके, tan15° का मान दशमलव के तीन स्थानों तक ज्ञात कीजिए।

[√3 = 1.732 प्रयोग करें]

This question was previously asked in
SSC CGL 2023 Tier-I Official Paper (Held On: 24 Jul 2023 Shift 1)
View all SSC CGL Papers >
  1. 0.268
  2. 0.27
  3. 0.267
  4. 0.269

Answer (Detailed Solution Below)

Option 1 : 0.268
vigyan-express
Free
PYST 1: SSC CGL - General Awareness (Held On : 20 April 2022 Shift 2)
3.6 Lakh Users
25 Questions 50 Marks 10 Mins

Detailed Solution

Download Solution PDF

दिया गया है:

tan2α = \(\rm\frac{2 tan \alpha}{1-tan^{2}\alpha}\)

प्रयुक्त सूत्र:

Tan15° = Tan(45 – 30)°

त्रिकोणमिति सूत्र से, हम जानते हैं,

Tan (A – B) = (Tan A – Tan B) /(1 + Tan A Tan B)

गणना:

इसलिए, हम लिख सकते हैं,

tan(45 – 30)° = tan 45° – tan 30°/1+ tan 45° tan 30°

अब tan 45° और tan 30° का मान तालिका से रखने पर, हमें प्राप्त होता है;

tan(45 – 30)° = (1 – 1/√3)/ (1 + 1.1/√3)

tan (15°) = √3 – 1/ √3 + 1

= (√3 – 1)2/ [(√3)2 - 12]

= (3 + 1 - 2√3)/2 = 2 - √3

= 0.268

अत:, tan (15°) का मान 0.268 है।

Alternate Method
|

tan 30° = tan 2(15°)

त्रिकोणमिति सूत्र से हम जानते हैं,

tan2α = \(\rm\frac{2 tan \alpha}{1-tan^{2}\alpha}\) ,

गणना

इसलिए, हम लिख सकते हैं,

tan 30° = 2 × tan 15° /(1 - tan 2 15°)

अब tan 30° का मान रखने पर हमें प्राप्त होता है;

⇒ 1/ √3 = 2 tan 15° / (1 - tan 2 15°)

माना tan (15°) = x

⇒ 1/ √3 = 2x / (1 - x 2 )

⇒ x 2 - 1 + 2√3 x = 0

⇒ x+ 2√3 x - 1 = 0

द्विघात सूत्र से,

x = \(\frac{-2√3 \pm \sqrt{(2√3)^2 -4(1)(-1) }}{2\times 1}\)

⇒ x = \(\frac{-2√3 \pm \sqrt{12 +4 }}{2\times 1}\)

⇒ x = \(\frac{-2√3 \pm \sqrt{16 }}{2\times 1}\)

⇒ (4 - 2√3)/2 = 2 - √3

= 0.268

अत:, tan (15°) का मान 0.268 है।

Latest SSC CGL Updates

Last updated on Jun 13, 2025

-> The SSC CGL Notification 2025 has been released on 9th June 2025 on the official website at ssc.gov.in.

-> The SSC CGL exam registration process is now open and will continue till 4th July 2025, so candidates must fill out the SSC CGL Application Form 2025 before the deadline.

-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.

->  The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.

->  Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.

-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.

-> The CGL Eligibility is a bachelor’s degree in any discipline.

-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.

-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.

-> Candidates should also use the SSC CGL previous year papers for a good revision. 

Get Free Access Now
Hot Links: online teen patti teen patti boss teen patti master real cash