प्रारंभिक मान समस्या dy = ex + 2y dx , y (0) = 0 को हल करें।

  1. y = \(\rm \frac{1}{2}\left ( \frac{1}{3+2\ e^{x}} \right )\)
  2. y = \(\rm \left ( \frac{1}{3- 2\ e^{x}} \right )\)
  3. y = \(\rm \frac{1}{2}\ln\left ( \frac{1}{3- 2\ e^{x}} \right )\)
  4. y = 3 - 2ex

Answer (Detailed Solution Below)

Option 3 : y = \(\rm \frac{1}{2}\ln\left ( \frac{1}{3- 2\ e^{x}} \right )\)
Free
Agniveer Navy SSR Full Test - 01
4.4 K Users
100 Questions 100 Marks 60 Mins

Detailed Solution

Download Solution PDF

अवधारणा:

\(\rm \int e^{x}dx = e^{x}\)

ln ey = y 

गणना:

हमारे पास है ,

dy = ex + 2y dx 

⇒ dy = ex . e2y dx 

⇒ e-2y dy = ex dx 

दोनों पक्षों का समाकलन करने पर, हम प्राप्त करते हैं

\(\rm -\frac{1}{2} \) e -2y = e x + C .... (i)

यह दिया जाता है कि y (0)  = 0, अर्थात x = 0, y = 0, पर इसे (i) में रखने पर,

\(\rm -\frac{1}{2} \) = 1 + C

⇒ C = \(\rm -\frac{3}{2} \)

C = \(\rm -\frac{3}{2} \) को (i) में रखने पर, हम प्राप्त करते हैं

\(\rm -\frac{1}{2} \) e-2y = e x \(\rm -\frac{3}{2} \)

⇒ e-2y = - 2ex  + 3

⇒ e2y = \(\rm \frac{1}{3- 2\ e^{x}} \)

⇒ 2y = ln \(\rm \left ( \frac{1}{3- 2\ e^{x}} \right )\)

⇒ y = \(\rm \frac{1}{2}\ln\left ( \frac{1}{3- 2\ e^{x}} \right )\)

सही विकल्प 3 है

Latest Indian Navy Agniveer SSR Updates

Last updated on Jun 20, 2025

-> The Indian Navy SSR Agniveeer Merit List has been released on the official website.

-> The Indian Navy Agniveer SSR CBT Exam was conducted from 25th to 26th May 2025.

->The application window was open from 29th March 2025 to 16th April 2025.  

-> The Indian Navy SSR Agniveer Application Link is active on the official website of the Indian Navy.

.->Only unmarried males and females can apply for Indian Navy SSR Recruitment 2025.

-> The selection process includes a Computer Based Test, Written Exam, Physical Fitness Test (PFT), and  Medical Examination.

->Candidates Qualified in 10+2 with Mathematics & Physics from a recognized Board with a minimum 50% marks in aggregate can apply for the vacancy.

-> With a salary of Rs. 30,000, it is a golden opportunity for defence job seekers.

-> Candidates must go through the Indian Navy SSR Agniveer Previous Year Papers and Agniveer Navy SSR mock tests to practice a variety of questions for the exam.

More Solution of Differential Equations Questions

Get Free Access Now
Hot Links: teen patti master list teen patti club teen patti rummy 51 bonus teen patti winner