यदि [(x + 1)2 f(x) – g(x)] नीचे दिखाए गए अवकल समीकरण का विशेष समाकल है, तो

\({\left( {x + 1} \right)^2}\frac{{{d^2}y}}{{d{x^2}}} - 3\left( {x + 1} \right)\frac{{dy}}{{dx}} + 4y = {x^2}\)

  1. f(x) = log (x + 1)2 और g(x) = 2x + 5
  2. \(f\left( x \right) = \frac{{\log {{\left( {x + 1} \right)}^2}}}{2}\) और \(g\left( x \right) = \frac{{2x + 1}}{3}\)
  3. f(x) = log (x + 1) और g(x) = 5x + 1
  4. \(f\left( x \right) = \frac{1}{2}{\left[ {\log \left( {x + 1} \right)} \right]^2}\) और  \(g\left( x \right) = \frac{{8x \;+\; 7}}{4}\)

Answer (Detailed Solution Below)

Option 4 : \(f\left( x \right) = \frac{1}{2}{\left[ {\log \left( {x + 1} \right)} \right]^2}\) और  \(g\left( x \right) = \frac{{8x \;+\; 7}}{4}\)
Free
AAI ATC JE Physics Mock Test
7.8 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

माना x + 1 = ez ताकि z = log (x + 1) और x = ez – 1

दिया गया समीकरण बन जाता है:

[D(D - 1) – 3D + 4]y = (ez - 1)2, d = d/dz

Or (D2 – 4D + 4)y = e2z – 2ez + 1

अतिरिक्त समीकरण, m2 – 4m + 4 = 0 है

(m – 2)2 = 0

∴ \(C.F. = [\left( {{C_1} + {C_2}z} \right){e^{2z}} = \left[ {{C_1} + {C_2}\log \left( {x + 1} \right)} \right]{\left( {x + 1} \right)^2}\)

\(P.I. = \frac{1}{{{{\left( {D - 2} \right)}^2}}}{e^{2z}} - \frac{2}{{{{\left( {D - 2} \right)}^2}}}{e^z} + \frac{1}{{{{\left( {D - 2} \right)}^2}}}0.z\)

\(\frac{{{z^2}}}{2}{e^2} - \frac{2}{{{{\left( {1 - 2} \right)}^2}}}{e^z} + \frac{1}{{{{\left( {0 - 2} \right)}^2}}}{e^{0.z}}\)

\(\frac{{{z^2}}}{2}{e^{2z}} - 2{e^z} + \frac{1}{4}\)

\(\frac{1}{2}{\left( {x + 1} \right)^2}{\left\{ {\log \left( {x + 1} \right)} \right\}^2} - 2\left( {x + 1} \right) + \frac{1}{4}\)

सही उत्तर है:

\(f\left( x \right) = \frac{1}{2}{\left[ {\log \left( {x + 1} \right)} \right]^2}\) और

\(g\left( x \right) = \frac{{8x\; + \;7}}{4}\)

Latest AAI JE ATC Updates

Last updated on Jun 19, 2025

-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive.. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.

-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

Get Free Access Now
Hot Links: teen patti master 51 bonus real teen patti teen patti casino apk teen patti all