ABCD एक वर्गाकार मैदान है जिसमें AB = x है। इस वर्गाकार मैदान के केंद्र O पर 2x ऊँचाई का एक ऊर्ध्वाधर खंभा OP खड़ा है। यदि ∠APO = θ, तो cot θ किसके बराबर है ?

This question was previously asked in
CDS Elementary Mathematics 16 April 2023 Official Paper
View all CDS Papers >
  1. √2
  2. 2
  3. 2√2
  4. 3√2

Answer (Detailed Solution Below)

Option 3 : 2√2
Free
UPSC CDS 01/2025 General Knowledge Full Mock Test
8.1 K Users
120 Questions 100 Marks 120 Mins

Detailed Solution

Download Solution PDF

दिया गया है:

AB = x

∠APO = θ

प्रयुक्त अवधारणा:

वर्ग का विकर्ण = √2a

cotθ = आधार/लंब

गणना:
F1 Vinanti Teaching 19.06.23 D1 V2
उपरोक्त अवधारणा के अनुसार,

वर्ग का विकर्ण = √2a

⇒ AC = x√2

⇒ OA = \(\frac{x√2}{{2}}\) = \(\frac{x}{{√2}}\)

अब, उपरोक्त आकृति के अनुसार,

ΔOAP में,

⇒ cotθ = \(\frac{OP}{{OA}}\) = \(\frac{2x}{{x/√ 2}}\)

⇒ cotθ = 2√2

∴ Cotθ का अभीष्ट मान 2√2 है।

Latest CDS Updates

Last updated on Jul 7, 2025

-> The UPSC CDS Exam Date 2025 has been released which will be conducted on 14th September 2025.

-> Candidates can now edit and submit theirt application form again from 7th to 9th July 2025.

-> The selection process includes Written Examination, SSB Interview, Document Verification, and Medical Examination.  

-> Attempt UPSC CDS Free Mock Test to boost your score.

-> Refer to the CDS Previous Year Papers to enhance your preparation. 

More Quadrilaterals Questions

More Geometry Questions

Get Free Access Now
Hot Links: teen patti game - 3patti poker real teen patti teen patti wealth teen patti all game teen patti master purana