Question
Download Solution PDFABCD एक वर्गाकार मैदान है जिसमें AB = x है। इस वर्गाकार मैदान के केंद्र O पर 2x ऊँचाई का एक ऊर्ध्वाधर खंभा OP खड़ा है। यदि ∠APO = θ, तो cot θ किसके बराबर है ?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
AB = x
∠APO = θ
प्रयुक्त अवधारणा:
वर्ग का विकर्ण = √2a
cotθ = आधार/लंब
गणना:
उपरोक्त अवधारणा के अनुसार,
वर्ग का विकर्ण = √2a
⇒ AC = x√2
⇒ OA = \(\frac{x√2}{{2}}\) = \(\frac{x}{{√2}}\)
अब, उपरोक्त आकृति के अनुसार,
ΔOAP में,
⇒ cotθ = \(\frac{OP}{{OA}}\) = \(\frac{2x}{{x/√ 2}}\)
⇒ cotθ = 2√2
∴ Cotθ का अभीष्ट मान 2√2 है।
Last updated on Jul 7, 2025
-> The UPSC CDS Exam Date 2025 has been released which will be conducted on 14th September 2025.
-> Candidates can now edit and submit theirt application form again from 7th to 9th July 2025.
-> The selection process includes Written Examination, SSB Interview, Document Verification, and Medical Examination.
-> Attempt UPSC CDS Free Mock Test to boost your score.
-> Refer to the CDS Previous Year Papers to enhance your preparation.