Tangents and Normals to Conics MCQ Quiz in తెలుగు - Objective Question with Answer for Tangents and Normals to Conics - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Apr 16, 2025

పొందండి Tangents and Normals to Conics సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Tangents and Normals to Conics MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Tangents and Normals to Conics MCQ Objective Questions

Top Tangents and Normals to Conics MCQ Objective Questions

Tangents and Normals to Conics Question 1:

For the curve y = x3 - 6x2 + 9x + 4, 0 \(\le\)x \(\le\)5 the tangents have maximum slope for x = a. So a would be equal to:

  1. 5
  2. 4
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 1 : 5

Tangents and Normals to Conics Question 1 Detailed Solution

y = x3 - 6x2 + 9x + 4

To get an equation of tangent, differentiative the curve and equal it zero.

y' = 3x2 - 12x + 9

Now, y' = 0

x = 1, 3

Checking the value of y' at boundary points,

f(1) = 1 - 6 + 9 + 4

= 14 - 6 = 8

f(3) = 27 - 54 + 27 + 4 = 4

f(5) = 125 - 150 + 45 + 4

= 24

Thus the maximum value of slope will be at x = 5

Tangents and Normals to Conics Question 2:

If the curves \( \frac{x^2}{9} + \frac{y^2}{α } = 1 \) and \(y^3 = 81x \) intersect at right angles, then value of α  is:

  1. 27
  2. -27
  3. 81
  4. -81

Answer (Detailed Solution Below)

Option 1 : 27

Tangents and Normals to Conics Question 2 Detailed Solution

Concept: 

Two curves intersect at right angles means they are orthogonal :

Product of Slope of both curves = -1

Calculation

\( \frac{x^2}{9} + \frac{y^2}{α } = 1 \)

Differentiating with respect to x:

⇒ Slope = y' = \( -\frac{x}{9} × \frac{α}{y} \)

\(y^3 = 81x \)

Differentiating with respect to x:

⇒ ​Slope = \( y' = \frac{27}{y^2}\) 

Product of Slope of both curves

⇒ \( -\frac{x}{9} × \frac{α}{y} \) × \(\frac{27}{y^2} \) = -1

⇒ α = 27

Hence Option(1) is the correct answer.

Tangents and Normals to Conics Question 3:

If 3x + 4y =12√2 is a tangent to the ellipse (x2/a2) + (y2/9) = 1 for some a ∈ R then the distance between the foci of the ellipse is :

  1. 2√5
  2. 2√7
  3. 2√2
  4. 4

Answer (Detailed Solution Below)

Option 2 : 2√7

Tangents and Normals to Conics Question 3 Detailed Solution

Explanation -

3x+4y =12√2 is a tangent to the ellipse (x2/a2) + (y2/9) = 1

Equation of tangent to ellipse (x2/a2) + (y2/9) = 1 is y = mx + √(a2 m2+ 9)

Now, 3x + 4y = 12√2 ⇒ y = -(3/4)x + 3√2

m = -3/4

And √(a2 m2+ 9) = 3√2

(a2 (-3/4)2+ 9) = 18

a2 (9/16) = 9

a2 = 16

a = 4

e = √(1-b2/a2)

e = √(1-9/16)

= √7/4

Distance between foci is 2ae = 2 × 4 × √7/4

= 2√7

Hence the Correct option is (2)

Tangents and Normals to Conics Question 4:

Find the locus of the mid points of the chords of the circle x2 + y2 = 16, which are tangent to the hyperbola 9x2 – 16y2 = 144. 

  1. (x2 + y2)2 = 16x2 – 9y2
  2. (x2 + y2)2 = 16x2 + 9y2 
  3. (x2 + y2)2 = 9x2 – 16y2
  4. (x2 + y2)2 = 9x2 + 16y2

Answer (Detailed Solution Below)

Option 1 : (x2 + y2)2 = 16x2 – 9y2

Tangents and Normals to Conics Question 4 Detailed Solution

Calculation:

Equation of hyperbola is \(\frac{x^2}{16} - \frac{y^2}{9} = 1\)

Let (h, k) be the midpoint of the chord of the circle x2 + y2 = 16 .

∴ The equation of the chord will be hx + ky = h2 + k2  

⇒ \(y = \frac{-h}{k}x + \frac{h^2 + k^2}{k}\)

This will touch the circle if c2 = a2m2 - b2 

⇒ \(\left( \frac{h^2 + k^2}{k} \right) = 16 \left( \frac{-h}{k} \right)^2 - 9\)

⇒ (h2 + k2)2 = 16h2 − 9k2

Replacing h by x and y by k we get, (x2 + y2)2 = 16x2 – 9y2

∴ Required locus is (x2 + y2)2 = 16x2 – 9y2​.

The correct answer is Option 1.

Tangents and Normals to Conics Question 5:

The angle between the tangents to the parabola y2 = 4ax at the points where it intersects with the line x – y – a = 0 is

  1. \(\frac{\pi}{3}\)
  2. \(\frac{\pi}{4}\)
  3. \(\frac{\pi}{6}\)
  4. \(\frac{\pi}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{\pi}{2}\)

Tangents and Normals to Conics Question 5 Detailed Solution

Calculation:

Given, y2 = 4ax 

The coordinates of the focus of the parabola y2 = 4ax are (a, 0).

Now, the line x – y – a = 0 passes through this point.

⇒ It is a focal chord of the parabola.

⇒ Tangent intersects at right angle.

∴ The angle between the tangents to the parabola y2 = 4ax at the points where it intersects with the line x – y – a = 0 is \(\frac{\pi}{2}\).

The correct answer is Option 4.

Tangents and Normals to Conics Question 6:

The locus of the foot of perpendicular drawn from the centre of the ellipse x2 + 3y2 = 6 on any tangent to it is

  1. (x2 – y2)2 = 6x2 + 2y2
  2. (x2 – y2)2 = 6x2 – 2y2
  3. (x2 + y2)2 = 6x2 + 2y2 
  4. (x2 + y2)2 = 6x2 – 2y2

Answer (Detailed Solution Below)

Option 3 : (x2 + y2)2 = 6x2 + 2y2 

Tangents and Normals to Conics Question 6 Detailed Solution

Concept:

The equation of tangent on the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) is given by y = mx + \(\sqrt{a^2m^2+b^2}\)

Calculation:

GIven, x2 + 3y2 = 6 is an ellipse.

⇒ \(\frac{x^2}{6}+\frac{y^2}{3}=1\)

∴ Equation of tangent is y = mx + \(\sqrt{6m^2+2}\) … (i)

∴ Equation of line passing through (0, 0) and perpendicular to (i) is:

\(\frac{y-0}{x-0}=-\frac{1}{m}\)

⇒ m = \(-\frac{x}{y}\)

∴ Putting the value of m in (i), we get:

y = \((-\frac{x}{y})\)x + \(\sqrt{6\left(\frac{-x}{y}\right)^2+2}\)

⇒ y2 = - x2\(\sqrt{6x^2+2y^2}\)

⇒ x2 + y2\(\sqrt{6x^2+2y^2}\)

⇒ (x2 + y2)2 = 6x2 + 2y2​ 

∴ The locus of the foor of perpendicular is (x2 + y2)2 = 6x2 + 2y2.

The correct answer is Option 3.

Tangents and Normals to Conics Question 7:

If ax + by = c is tangent to the circle x2 + y2 = 16 then

  1. 16(a2 + b2) = c2
  2. 16(a2 - b2) = c2
  3. 16(a2 + b2) = -c2
  4. 16(a2 - b2) = -c2

Answer (Detailed Solution Below)

Option 1 : 16(a2 + b2) = c2

Tangents and Normals to Conics Question 7 Detailed Solution

Concept:

The roots of any quadratic equation ax2 + bx + c = 0 are equal when D = 0 i.e., b2 - 4ac = 0. 

Calculation:

We have, ax + by = c

⇒ y = (c - ax)/b      ----(1)

On substituting this value in x2 + y2 = 16, we get,

⇒ x2 + (c - ax)/ b2 = 16

⇒ x2 + (c2 - 2cax + a2x2) / b2 = 16

⇒ b2x2 + c2 - 2cax + a2x2 = 16b2

⇒ (a2 + b2)x2 - 2cax + (c2 - 16b2) = 0      ----(2)

As the line is a tangent, there will be a single solution for the set of equations. Hence, the roots will be equal for the quadratic equation (2).

For equal roots, D = 0

⇒ (-2ca)2 - 4 (a2 + b2)(c2 - 16b2) = 0

⇒ c2a2 = (a2 + b2)(c2 - 16b2)

⇒ c2a2 = c2a2 + b2c2 - 16a2b2 - 16b4

⇒ 16a2b2 + 16b4 = b2c2

⇒ 16a2 + 16b2 = c2

⇒ 16(a2 + b2) = c2

Hence, If ax + by = c is tangent to the circle x2 + y2 = 16 then 16(a2 + b2) = c2.

Tangents and Normals to Conics Question 8:

Let a tangent to the curve 9x2 + 16y2 = 144 intersect the coordinate axes at the points A and B. Then, the minimum length of the line segment AB is

Answer (Detailed Solution Below) 7

Tangents and Normals to Conics Question 8 Detailed Solution

Concept:

Equation of tangent to ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) at any point (a cosϕ, b sinϕ) is \(\frac{x}{a} \cos ϕ+\frac{y}{b} \sin ϕ=1\)

Calculation:

Given equation of curve is 9x2 + 16y2 = 144

⇒ \(\frac{x^2}{16}+\frac{y^2}{9}=1\)

The general point is (4 cos ϕ, 3 sin ϕ)

∴ The equation of tangent is \(\frac{x}{4} \cos ϕ+\frac{y}{9} \sin ϕ=1\)

qImage66a093c4db209996f92b50fc

∴ Coordinates of A = (4 secϕ, 0) and Coordinates of B = (0, 3 cosecϕ)

∴ AB = \(\sqrt{16 \sec ^2 ϕ+9 \operatorname{cosec}^2 ϕ}\) 

⇒ AB = \(\sqrt{16\left(1+\tan ^2 ϕ\right)+9\left(1+\cot ^2 ϕ\right)}\)

⇒ AB = \(\sqrt{25+(4 \tan ϕ)^2+(3 \cot ϕ)^2}\)

⇒ AB = \(\sqrt{25+(4 \tan ϕ-3 \cot ϕ)^2+24}\)

⇒ (AB)min\(\sqrt{25+24}\) = 7

∴ The minimum length of the line segment AB is 7.

Tangents and Normals to Conics Question 9:

The equation of the tangents to the ellipse 4x2 + 5y2 = 20 which are perpendicular to line 3x + 2y - 5 = 0 is

  1. 3y = 2x ± \(\sqrt{56}\)
  2. 3y = 2x + \(\sqrt{56}\)
  3. 3y = 2x + \(\sqrt{50}\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 3y = 2x ± \(\sqrt{56}\)

Tangents and Normals to Conics Question 9 Detailed Solution

Calculation:

The equation of the given ellipse is  4x2 + 5y2 = 20

It can be written as \(\frac{x^2}{5}+\frac{y^2}{4}=1\), which is comparable with the first standard form \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)

Here a2 = 5 and b2 = 4.

The given line is 3x + 2y - 5 = 0, its slope = -(3/2)

Since the tangents are perpendicular to the given line, the slope of the required tangents is 2/3 (from m1 m2 = -1)

Thus the equation of the required tangents is,

⇒ \(y = \frac{2}{3}x±\sqrt{5.(\frac{2}{3})^2+4}\)

⇒ \(y= \frac{2}{3}x±\sqrt{\frac{20}{9}+4}\)

⇒ \(y=\frac{2}{3}x±\frac{\sqrt{56}}{3}\)

⇒ \(3y=2x±\sqrt{56}\)

Additional Information Tangents to an Ellipse:

→ If the line y = mx + c touches the ellipse \(\rm \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\), then c2 = a2m2 + b2.

→ The straight lines \(\rm y = mx \pm \sqrt{a^2m^2 + b^2}\) represent the tangents to the ellipse.

Tangents and Normals to Conics Question 10:

If the normals at the point \((ct_1, \frac{c}{t_1})\) on the hyperbola xy = c2 meets it again at the point \((ct_2, \frac{c}{t_2})\) then-

  1. t1t2 = –1
  2. t2t1 = –1
  3. t2 t13 = –1
  4. t22 t1 = –1

Answer (Detailed Solution Below)

Option 3 : t2 t13 = –1

Tangents and Normals to Conics Question 10 Detailed Solution

Concept;

Equation of normal passes at \((ct_1, \frac{c}{t_1})\) is yt - xt- c + ct4  = 0

If it passes through any point say P having its coordinates as 't' i.e., \((ct_2, \frac{c}{t_2})\).

Calculation:

The coordinates must satisfy the equation. 

Hence, we get \(\frac{c}{t_2}\)t- ct2t1- c + ct14  = 0

t- t13t2- t2 + t2t1 = 0

Factorize this equation, (t- t2) + t2t13(t- t2) = 0

On factorizing, we get, (t- t2)(t2t13 + 1) = 0

Hence, t2t13 + 1 = 0  ⇒ t2t1 = -1 

or t≠ t2 ⇒ This is not possible.

Hence,if the normals at the point \((ct_1, \frac{c}{t_1})\) on the hyperbola xy = c2 meets it again at the point \((ct_2, \frac{c}{t_2})\) then- t2t1= -1

Get Free Access Now
Hot Links: mpl teen patti yono teen patti teen patti joy teen patti real cash