Latus Rectum MCQ Quiz in తెలుగు - Objective Question with Answer for Latus Rectum - ముఫ్త్ [PDF] డౌన్లోడ్ కరెన్
Last updated on Apr 19, 2025
Latest Latus Rectum MCQ Objective Questions
Top Latus Rectum MCQ Objective Questions
Latus Rectum Question 1:
Let \(H_n = \frac{x^2}{1 + n} - \frac{y^2}{3 + n} = 1, \quad n \in \mathbb{N} \) Let k be the smallest even value of n such that the eccentricity of Hk is a rational number. If l is length of the latus return of Hk, then 21l is equal to _______
Answer (Detailed Solution Below) 0 - 306
Latus Rectum Question 1 Detailed Solution
Calculation :
⇒ Given hyperbola: \( H_n \Rightarrow \frac{x^2}{1 + n} - \frac{y^2}{3 + n} = 1 \)
⇒ Eccentricity: \( e = \sqrt{1 + \frac{b^2}{a^2}} \)
⇒ \( e = \sqrt{1 + \frac{3 + n}{1 + n}} = \sqrt{\frac{2n + 4}{n + 1}} \)
⇒ For \( e \in \mathbb{Q} \), the expression under square root must be a perfect square.
⇒ Try smallest even \( n \) such that the value is rational: Let \( n = 48 \Rightarrow e = \sqrt{\frac{2(48) + 4}{48 + 1}} = \sqrt{\frac{100}{49}} = \frac{10}{7} \)
⇒ So, \( a^2 = 49, \quad b^2 = 51, \quad a = 7 \)
⇒ Length of Latus Rectum:
⇒ \( l = \frac{2b^2}{a} = \frac{2 \cdot 51}{7} = \frac{102}{7} \)
⇒ Multiply by 21: \( 21l = 21 \cdot \frac{102}{7} = 3 \cdot 102 = 306 \)
Hence, the correct answer is 306.
Latus Rectum Question 2:
Let the eccentricity of an ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} =\)1 is reciprocal to that of the hyperbola 2x2 – 2y2 = 1. If the ellipse intersects the hyperbola at right angles, then square of length of the latus-rectum of the ellipse is ______________.
Answer (Detailed Solution Below) 0 - 2
Latus Rectum Question 2 Detailed Solution
Calculation:
\( \begin{align*} e_H &= \sqrt{2} \end{align*} \)
\( \begin{align*} e_E &= \frac{1}{\sqrt{2}} \end{align*} \)
Since the curves intersect each other orthogonally
The ellipse and the hyperbola are confocal
⇒ \( \begin{align*} H: \frac{x^2}{1/2} - \frac{y^2}{1/2} &= 1 \end{align*} \)
\( \begin{align*} \Rightarrow \text{foci} &= (1,0) \end{align*} \)
For ellipse aeE = 1
\( \begin{align*} \Rightarrow a &= \sqrt{2} \end{align*} \)
⇒\( \begin{align*} (e_E)^2 &= \frac{1}{2} \Rightarrow 1 - \frac{b^2}{a^2} = \frac{1}{2} \Rightarrow \frac{b^2}{a^2} = \frac{1}{2} \end{align*} \)
\( \begin{align*} \Rightarrow b^2 &= 1 \end{align*} \)
Length of L.R \(= \frac{2b^2}{a} = \frac{2}{\sqrt{2}} = \sqrt{2} \)
Hence, the correct answer is 2.
Latus Rectum Question 3:
Find the eccentricity of the ellipse in which length of minor axis is equal to one-fourth of the distance between their foci.
Answer (Detailed Solution Below)
Latus Rectum Question 3 Detailed Solution
Answer (1)
Sol.
2b = \(\frac{1}{4}\)(ae) ⇒ 4b = ae
b2 = a2 - a2e2
b2 = a2 - 16b2
17b2 = a2
e = \(\sqrt{\frac{1-b^{2}}{a^{2}}}=\sqrt{\frac{1-1}{17}}=\frac{4}{\sqrt{17}}\)
Latus Rectum Question 4:
Let the length of a latus rectum of an ellipse \(\rm \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \) be 10. If its eccentricity is the minimum value of the function \(\mathrm f(\mathrm{t})=\mathrm{t}^{2}+\mathrm{t}+\frac{11}{12}\), t ∈ R, then a2 + b2 is equal to :
Answer (Detailed Solution Below)
Latus Rectum Question 4 Detailed Solution
Calculation:
Length of LR = \(\rm \frac{2 b^{2}}{a}=10 \Rightarrow 5 a=b^{2} \) .....(1)
\(\rm f(t)=t^{2}+t+\frac{11}{12} \)
⇒ \(\rm \frac{d f(t)}{d t}=2 t+1=0 \Rightarrow t=\frac{-1}{2} \)
Min value of \(\rm f(t)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{-1}{2}\right)+\frac{11}{12} \)
\(=\frac{1}{4} \frac{-1}{2}+\frac{11}{12}=\frac{3-6+11}{12}=\frac{8}{12}=\frac{2}{3}=e \)
⇒ \(e^{2}=\frac{1-b^{2}}{a^{2}} \Rightarrow \frac{4}{9}=\frac{1-b^{2}}{a^{2}} \)
\(\rm \Rightarrow \frac{b^{2}}{a^{2}}=\frac{1-4}{a}=\frac{5}{a} \Rightarrow b^{2}=\frac{5 a^{2}}{a} \) ......(2)
From (1) & (2)
⇒ \(\rm 5 a=\frac{5 a^{2}}{a} \Rightarrow a=9, b=\sqrt{45}=3 \sqrt{5}\)
∴ a2 + b2 = 81 +45 = 126
Hence, the correct answer is Option 2.
Latus Rectum Question 5:
The length of the latus-rectum of the ellipse, whose foci are (2, 5) and (2, –3) and eccentricity is \(\frac{4}{5}\) , is
Answer (Detailed Solution Below)
Latus Rectum Question 5 Detailed Solution
Calculation:
Center C = \((\frac{2+2}{2}, \frac{5 +(-3)}{2}) = (2,1)\)
Distance between foci:
⇒ 2c = \(\sqrt{(2-2)^2 + (5-(-3))^2} = 8 \)
⇒ c = 4
Also e = a/c ⇒ a = c/e = \(\frac{4}{\frac{4}{5}} = 5\)
Now b2 = a2 − c2 = 25 − 16 = 9,
⇒ b = 3
Length of latus rectum = \(\frac{2b^2}{a} = \frac{2 \times 9}{5} = \frac{18}{5}\)
Hence, the correct answer is Option 4.
Latus Rectum Question 6:
What is the sum of the major and minor axes of the ellipse whose eccentricity is 4/5 and length of latus rectum is 14.4 unit?
Answer (Detailed Solution Below)
Latus Rectum Question 6 Detailed Solution
Concept:
Standard equation of an ellipse: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a > b)
Coordinates of foci = (± ae, 0)
Eccentricity (e) = \(\sqrt {1 - {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) ⇔ a2e2 = a2 – b2
Length of latus rectum = \(\rm \frac {2b^2}{a}\)
Length of major axis =2a and Length of minor axis = 2b
Calculation:
Here, e = 4/5 =\(\sqrt {1 - {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \)
Squaring both sides, we get
16/25 = \(\rm 1 - \frac {b^2}{a^2}\)
∴ (b2 / a2) = 1 - 16/25 = 9/25 ....(1)
Latus rectus 2b2 / a = 14.4
⇒ b2 / a = 7.2
Puting above value in (1),
7.2/ a = 9/25
⇒ a = 20
Now, b2 = 7.2 × 20 = 144
⇒ b = 12
Sum of major and minor axes = 2a + 2b
= 2(20) + 2(12)
= 64
Hence, option (3) is correct.
Latus Rectum Question 7:
What is the length of the latus rectum of the ellipse 25x2 + 16y2 = 400 ?
Answer (Detailed Solution Below)
Latus Rectum Question 7 Detailed Solution
Concept:
Equation |
\(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a > b) |
\(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a < b) |
Length of Latus rectum |
\(\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}\) |
\(\frac{{2{{\rm{a}}^2}}}{{\rm{b}}}\) |
Calculation:
25x2 + 16y2 = 400
\( \Rightarrow \frac{{25{{\rm{x}}^2}}}{{400}} + \frac{{16{{\rm{y}}^2}}}{{400}} = 1\)
\( \Rightarrow \frac{{{{\rm{x}}^2}}}{{16}} + \frac{{{{\rm{y}}^2}}}{{25}} = 1\)
Comparing, with standard equation: a = 4 ; b = 5
Since ( a < b )
\({\rm{Length\;of\;latus\;rectum}}:\frac{{2{{\rm{a}}^2}}}{{\rm{b}}} = \frac{{2 \times 4 \times 4}}{5} = \frac{{32}}{5}\)Latus Rectum Question 8:
The length of latus rectum of the ellipse 3x2 + y2 -12x + 2y + 1 = 0 is
Answer (Detailed Solution Below)
Latus Rectum Question 8 Detailed Solution
Concept:
Standard Equation of ellipse: \(\frac{{{\rm{\;}}{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} + \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}} = 1\)
Length of latus rectum = 2b2/a, when a > b and 2a2/b, when a < b
Calculation:
3x2 + y2 -12x + 2y + 1 = 0
⇒ 3(x2 - 4x + 4) – 12 + (y2 + 2y + 1) = 0
⇒ 3(x – 2)2 – 12 + (y + 1)2 = 0
⇒ 3(x – 2)2 + (y + 1)2 = 12
\( \Rightarrow \frac{{3{{\left( {{\rm{x}} - 2} \right)}^2}}}{{12}} + \frac{{{{\left( {{\rm{y}} + 1} \right)}^2}}}{{12}} = 1\) (Divide by 12)
\( \Rightarrow \frac{{{{\left( {{\rm{x}} - 2} \right)}^2}}}{4} + \frac{{{{\left( {{\rm{y}} + 1} \right)}^2}}}{{12}} = 1\)
\( \Rightarrow \frac{{{{\left( {{\rm{x}} - 2} \right)}^2}}}{{{2^2}}} + \frac{{{{\left( {{\rm{y}} + 1} \right)}^2}}}{{{{\left( {2\sqrt 3 } \right)}^2}}} = 1\)
∴ a2 = 22 and b2 = (2√3)2
Here a < b
So, length of latus rectum = 2a2/b
= \(\frac{{2\left( 4 \right)}}{{2\sqrt 3 }}\)
= \(\frac{4}{\sqrt 3}\) units
Hence, option (3) is correct.Latus Rectum Question 9:
If the latus rectum of an ellipse is equal to half of the minor axis, then what is its eccentricity?
Answer (Detailed Solution Below)
Latus Rectum Question 9 Detailed Solution
Concept:
The equation of ellipse is \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1\;(a>b)\)
length of Latus rectum of ellipse = \(\rm \frac{2b^2}{a}\)
Length of minor axis = 2b.
eccentricity = \(e = \sqrt {1 - (\frac{b}{a})^2}\)
Calculations:
Given, the latus rectum of an ellipse is equal to half of the minor axis.
Suppose, the equation of ellipse is \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1\)
length of Latus rectum of ellipse = \(\rm \frac{2b^2}{a}\)
Length of minor axis = 2b.
Given, the latus rectum of an ellipse is equal to half of the minor axis
⇒ \(\rm \frac{2b^2}{a} = b\)
⇒ \(\rm \frac{b}{a} = \frac{1}{2}\)
If the equation of ellipse is \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1\) then eccentricity = \(e = \sqrt {1 - (\frac{b}{a})^2}\)
⇒ \(e = \sqrt {1 - (\frac{1}{2})^2}\)
⇒ e = \(\rm\frac {\sqrt {3}}{2}\)
If the latus rectum of an ellipse is equal to half of the minor axis, then what is its eccentricity e = \(\rm\frac {\sqrt {3}}{2}\)
Latus Rectum Question 10:
Let the foci of a hyperbola be (1, 14) and (1, –12). If it passes through the point (1, 6), then the length of its latus-rectum is :
Answer (Detailed Solution Below)
Latus Rectum Question 10 Detailed Solution
Calculation
be = 13, b = 5
a2 = b2 (e2 – 1)
= b2 e2 – b2
= 169 – 25 = 144
\(\ell(\mathrm{LR})=\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}=\frac{2 \times 144}{5}=\frac{288}{5}\)
Hence option 3 is correct