Maximum or Minimum value MCQ Quiz in मराठी - Objective Question with Answer for Maximum or Minimum value - मोफत PDF डाउनलोड करा

Last updated on Apr 3, 2025

पाईये Maximum or Minimum value उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Maximum or Minimum value एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Maximum or Minimum value MCQ Objective Questions

Top Maximum or Minimum value MCQ Objective Questions

Maximum or Minimum value Question 1:

If x ∈ R, then the minimum value (x– 6x + 13) is equal to-

  1. 6
  2. 13
  3. 7
  4. 4

Answer (Detailed Solution Below)

Option 4 : 4

Maximum or Minimum value Question 1 Detailed Solution

We have,

Given function (F) = (x– 6x + 13)

It can be expressed as,

(x– 6x + 13) = (x– 6x + 9 + 4)

or, F = x2 - 3x - 3x + 9 + 4

or, F = x(x - 3) - 3(x - 3) + 4

or, F = (x - 3)2 + 4

Minimum value of function (F) will be occurs when,

x = 3

In that case,

F = Minimum Value = 0 + 4 = 4

Maximum or Minimum value Question 2:

Where does the function f(x) = j=17(x − j)2 attain its minimum value ?

  1. x = 3.5
  2. x = 4
  3. x = 4.5
  4. x = 5

Answer (Detailed Solution Below)

Option 2 : x = 4

Maximum or Minimum value Question 2 Detailed Solution

Concept:

  • 1 + 2 + 3 + ... + n = n(n+1)2
  • 12 + 22 + 32 + ...+ n2 = n(n+1)(2n+1)6
  • f(x) is minimum at x = a if f '(a) = 0 and f "(a) > 0

Calculation:

Given, f(x) = j=17(x − j)2 

⇒ f(x) = (x − 1)2 + (x − 2)2 + (x − 3)2 + (x − 4)2 + (x − 5)2 + (x − 6)2 + (x − 7)2 

⇒ f(x) = (x2 − 2x + 12) + (x2 − 4x + 22) + (x2 − 6x + 32) + (x2 − 8x + 42) + (x2 − 10x + 52) + (x2 − 12x + 62) +(x2 − 14x + 72)

⇒ f(x) = 7x2 - 2(1 + 2 + 3 + 4 + 5 + 6 + 7)x + (12 + 22 + 32 + 42 + 52 + 62 + 72)

⇒ f(x) = 7x2 - 2(7(7+1)2)x + (7(7+1)(2(7)+1)6)

⇒ f(x) = 7x2 - 2(7(4))x + (7(8)(15)6)

⇒ f(x) = 7x2 - 56x + 140

⇒ f '(x) = 14x - 56 

⇒ f "(x) = 14

So f '(x) = 0 at x = 4 and f "(4) > 0

⇒ f(x) is minimum at x = 4

∴ The correct option is (2).

Maximum or Minimum value Question 3:

The maximum value of 3cosθ+5sin(θπ6) for any real value of θ is

  1. 792
  2. 34
  3. 31
  4. 19

Answer (Detailed Solution Below)

Option 4 : 19

Maximum or Minimum value Question 3 Detailed Solution

From question, the expression given is:

3cosθ+5sin(θπ6)

3cosθ+5(sinθcosπ6sinπ6cosθ)

3cosθ+5(32sinθ12cosθ)

3cosθ52cosθ+532sinθ

12cosθ+532sinθ

The maximum value of a cos θ + b sin θ is a2+b2.

The maximum value of the obtained equation 12cosθ+532sinθ is:

(12)2+(532)2=14+754=764=19

Maximum or Minimum value Question 4:

What is the minimum value of the function f(x) = log10(x2 + 2x + 11) ?

  1. 0
  2. 1
  3. 2
  4. 10

Answer (Detailed Solution Below)

Option 2 : 1

Maximum or Minimum value Question 4 Detailed Solution

Concept:

The function f(x) has minimum value at x = a, if f '(a) = 0 and f "(a) > 0

Formula used:

  • logba=lnalnb
  • ddx(pq)=pqpqq2

Calculation:

Given, f(x) = log10(x2 + 2x + 11) = 1ln10 ln (x2 + 2x + 11) 

⇒ f '(x) = 1ln101x2+2x+11(x2 + 2x + 11)'

⇒ f '(x) = 1ln102x+2x2+2x+11__(i)

⇒ f '(x) = 0 when 2x + 2 = 0 → x = -1

So, f '(-1) = 0

Now again differentiating (i),

⇒ f "(x) = 1ln10(2(x2+2x+11)(2x+2)(2x+2)(x2+2x+11)2) 

⇒ f "(x) = 1ln10(2x2+4x+224x28x4(x2+2x+11)2)  

⇒ f "(x) = 1ln10(2x24x+18(x2+2x+11)2) 

⇒ f "(-1) = 1ln10(24(1)+18(1+2(1)+11)2) 

⇒ f "(-1) = 1ln10×20100 

⇒  f "(-1) = 15ln10> 0

So, f '(-1) = 0 and f "(-1) > 0

⇒ f(x) has minimum value at x = -1

The minimum value of f(x) = f(-1) = log10((-1)2 + 2(-1) + 11)

⇒ The minimum value of f(x) = log10(10) = 1

∴ The correct option is (2).

Maximum or Minimum value Question 5:

Comprehension:

Direction: Consider the function

f(θ) = 4(sin2 θ + cos4 θ)

What is the minimum value of the function f(θ)?

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 4 : 3

Maximum or Minimum value Question 5 Detailed Solution

Calculation:

Given:

f(θ) = 4(sin2 θ + cos4 θ)

⇒ f(θ) = 4(1 - cos2 θ + cos4 θ)

Which is a quadratic equation in cos2θ

f(θ)=4[1cos2θ(1cos2θ)]=4(1sin2θcos2θ)

f(θ)=4(1(sinθcosθ)2)=4(2sinθcosθ)2=4sin22θ

We know the range of sin 2θ:

-1 ≤ sin2θ ≤ 1

⇒ 0 ≤ sin2 2θ ≤ 1

⇒ -1 ≤ -sin22θ ≤ 0

⇒ 3 ≤ 4 -sin22θ ≤ 4

⇒ 3 ≤ f(θ) ≤ 4

Minimum value = 3

Maximum or Minimum value Question 6:

Under which one of the following conditions does the function f(x) = (p sec x)2 + (q cosec x)2 attain minimum value ?

  1. tan2 x = qp
  2. cot2 x = qp
  3. tan2 x = pq
  4. cot2 x = pq

Answer (Detailed Solution Below)

Option 1 : tan2 x = qp

Maximum or Minimum value Question 6 Detailed Solution

Concept:

  • 1 + tan2x = sec2
  • 1 + cot2x = cosec2x
  • f(x) is minimum at x = a, if f '(a) = 0 and f "(a) > 0
  • Chain Rule: (f(g(x))' = f '(g(x)).g'(x)
  • (f(x)g(x))' = f '(x).g(x) + f(x).g'(x)

Calculation:

Given: f(x) = (p sec x)2 + (q cosec x)2 

⇒ f(x) = p2 sec2x + q2 cosec2x

⇒ f(x) = p2 + p2tan2x + q2 + q2cot2x

⇒ f '(x) = 0 + p2(2tan x sec2x) + q2(2cot x (-cosec2x)

⇒ f '(x) = 2p2tan x sec2x - 2q2cot x cosec2​x __(i)

Again differentiating (i),

⇒ f ''(x) = 2p2((tan x)' sec2x + tan x (sec2x)') - 2q2((cot x)' cosec2​x + cot x (cosec2x)')

⇒ f ''(x) = 2p2(sec4x + tan x ( 2sec x tan x sec x)) - 2q2(-cosec4​x + cot x (-2cosec x cosec x cot x))

⇒ f ''(x) = 2p2(sec4x + 2tan2x sec2x) + 2q2(cosec4​x + 2cot2x cosec2x )

⇒ f :"(x) > 0 for every x {∵ every term is of even power}

And from (i),

f ' (x) = 0 when 2p2tan x sec2x - 2q2cot x cosec2​x = 0

⇒ p2tan x sec2x = q2cot x cosec2​x

⇒ tanxsec2xcotx cosec2x=q2p2

⇒ tan2xsin2xcos2x=q2p2

⇒ tan4x=q2p2

⇒ tan2 x = qp

so when tan2 x = qp, f "(x) = 0 and f "(x) > 0

⇒ f(x) is minimum when tan2 x = qp

∴ The correct option is (1).

Maximum or Minimum value Question 7:

Let y = 4sin2θ − cos2θ. If l and m are the minimun and maximum values of y respectively, then

  1. lm = ml
  2. lm = 1m
  3. l + m = lm
  4. lmlm = 1 + m

Answer (Detailed Solution Below)

Option 1 : lm = ml

Maximum or Minimum value Question 7 Detailed Solution

Concept:

  • cos2θ = 1 - 2sin2θ
  •  sin2θ ≤ 1

Explanation:

We have  y = 4sin2θ − cos2θ

⇒ y = 4sin2θ − (1 - 2sin2θ) 

⇒ y = 4sin2θ − 1 + 2sin2θ

⇒ y = 6sin2θ − 1

⇒ sin2θ = y+16

Since, 0  sin2θ ≤ 1

Thus, 0  y+16 ≤ 1

⇒ 0 ≤ y + 1 ≤ 6

⇒ 0 - 1 ≤ y ≤ 6 -1

⇒ - 1 ≤ y ≤ 5 

that is, the minimum value of y is - 1 and the maximum value of y is 5

Now, we are given that l and m are the minima and maximum values of y respectively, then

l = - 1 and m = 5

Thus, let us check each option:

Option 1)

LHS = lm = -1 × 5 = - 5 = 51=ml = RHS

that option 1 is satisfied.

Option 2)

LHS = lm = -1 × 5 = - 5 ≠  15lm  

that is option 2 is NOT satisfied.

Option 3)

LHS = l + m = -1 + 5 = 4 ≠ 15lm = RHS

that is option 3 is NOT satisfied.

Option 4)

LHS = lmlm=(1)(5)1+5=54 ≠ 1 + 5 ≠ 1 + m

that is option 4 is NOT satisfied.

Maximum or Minimum value Question 8:

The maximum value of the function f(x) = 3 sin x + 4 cos x, is:

  1. 1
  2. 3
  3. 4
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Maximum or Minimum value Question 8 Detailed Solution

Concept:

Trigonometric Expressions of the form A sin x ± B cos x:

  • We define sin y = AA2+B2 and cos y = AA2+B2, such that y = tan1AB.
  • The expression simplifies to cos(x±y)=CA2+B2.


Calculation:

Given that f(x) = 3 sin x + 4 cos x.

Dividing by 132+42, we get:

⇒ f(x)32+42 = 332+42 sin x + 432+42 cos x

Let 332+42 = cos y and 432+42 = sin y.

⇒ f(x)5 = cos y sin x + sin y cos x

⇒ f(x) = 5[sin (x + y)]

Since -1 ≤ sin θ ≤ 1, the maximum value of f(x) is 5(1) = 5.

Maximum or Minimum value Question 9:

Find the maximum value of 15sin θ + 20cos θ. 

  1. 25
  2. 35
  3. 30
  4. 5
  5. None of the above/More than one of the above.

Answer (Detailed Solution Below)

Option 1 : 25

Maximum or Minimum value Question 9 Detailed Solution

 

Concept:

If the trigonometric ratio is in the form of 'asin θ + bcos θ'

Then the maximum value = a2+b2

And the minimum value = - a2+b2

Calculation:

15sin θ + 20cos θ

Here a = 15  and b = 20

Then the maximum value = 152+202

225+400

= √(625)

= 25 

∴ The maximum value of 15sin θ + 20cos θ is 25.

Maximum or Minimum value Question 10:

The maximum value of the function f(x) = 3 sin x + 4 cos x, is:

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

Answer (Detailed Solution Below)

Option 5 : 5

Maximum or Minimum value Question 10 Detailed Solution

Concept:

Trigonometric Expressions of the form A sin x ± B cos x:

  • We define sin y = AA2+B2 and cos y = AA2+B2, such that y = tan1AB.
  • The expression simplifies to cos(x±y)=CA2+B2.


Calculation:

Given that f(x) = 3 sin x + 4 cos x.

Dividing by 132+42, we get:

⇒ f(x)32+42 = 332+42 sin x + 432+42 cos x

Let 332+42 = cos y and 432+42 = sin y.

⇒ f(x)5 = cos y sin x + sin y cos x

⇒ f(x) = 5[sin (x + y)]

Since -1 ≤ sin θ ≤ 1, the maximum value of f(x) is 5(1) = 5.

Get Free Access Now
Hot Links: teen patti master downloadable content teen patti online game teen patti casino apk