Z Transform From Difference Equation MCQ Quiz in मल्याळम - Objective Question with Answer for Z Transform From Difference Equation - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 27, 2025

നേടുക Z Transform From Difference Equation ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Z Transform From Difference Equation MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Z Transform From Difference Equation MCQ Objective Questions

Top Z Transform From Difference Equation MCQ Objective Questions

Z Transform From Difference Equation Question 1:

Consider two discrete time signals: x[n] = {1, 1, 0} and y [n] = {1, 0, 1} for n = 0, 1, 2. The convoluted sequence x[n] * y[n] is

  1. {1, 1, 1, 1} for n = 0, 1, 2, 3
  2. {1, 1, 0, 1} for n = 0, 1, 2, 3
  3. {2, 1, 1} for n = 0, 1, 2, 3
  4. None of the above

Answer (Detailed Solution Below)

Option 1 : {1, 1, 1, 1} for n = 0, 1, 2, 3

Z Transform From Difference Equation Question 1 Detailed Solution

Taking z- transform of x[z] and y[z] we get

X[z] = 1 + Z-1   y(z) = 1 + Z-2

X[z] × y[z] = 1 + Z-1 + Z-2 + Z-3

The sequence x[n] * y[n] is {1, 1, 1, 1} for n = 0, 1, 2, 3

Z Transform From Difference Equation Question 2:

Difference equation of a system is given by

10y(n+2)+60y(n+1)+90y(n)=2x(n+1)+6x(n)

Then transfer function will be

  1. z+35z230z+45
  2. z1+35z2+30z1+45
  3. (1+3z)5+30z+45z2
  4. 15(z+3)

Answer (Detailed Solution Below)

Option 4 : 15(z+3)

Z Transform From Difference Equation Question 2 Detailed Solution

10y(n+2)+60y(n+1)+90y(n)=2x(n+1)+6x(n)

Taking Z transfer of the difference equation we get

10z2Y(z)+60zY(z)+90Y(z)=2zX(z)+6X(z)Y(z)X(z)=H(z)=2z+610z2+60z+90=2z+610(z2+6z+9)=z+35(z+3)2=15(z+3)

Z Transform From Difference Equation Question 3:

A system has input x[n] and output y[n] related by

y[n1]+2y[n]=x[n]

The output of the system for n0 when x[n]=0 and y[1]=2 is:

  1. [(23)(12)n]u[n]

  2. [(23)(12)n]u[n]

  3. [(12)n]u[n]

  4. [(12)n]u[n]

Answer (Detailed Solution Below)

Option 3 :

[(12)n]u[n]

Z Transform From Difference Equation Question 3 Detailed Solution

Taking z- transform we have

z1Y(z)+y[1]+2Y(z)=X(z)

For zero input response we put X(z)=0

Y(z)=11+12z1

y[n]=(12)nu[n]

Z Transform From Difference Equation Question 4:

Consider a causal LTI system described by

y[n]+3y[n1]=x[n]

with x[n]=αu[n] and y[1]=β

we have y[n]=[3(3)n+2]u[n] for n0. The value of α+β is _____

Answer (Detailed Solution Below) 9

Z Transform From Difference Equation Question 4 Detailed Solution

Given,

y[n]+3y[n1]=x[n]

Taking unilateral Z transform we have

Y(z)+3(z1Y(z)+y[1])=X(z)Y(z)=α(1+3z1)(1z1)3β1+3z1(αu[n]α1z1)

Y(z)=α3β+3βz1(1+3z1)(1z1)   ______ (i)

Now from y[n]=[3(3)n+2]u[n], we have

Taking unilateral z transform, Y(z)=31+3z1+21z1

=5+3z1(1+3z1)(1z1)  _____(ii)

Comparing (i) and (ii)

We have β = 1

α3β=5α=8

Thus, α+β=8+1=9

Z Transform From Difference Equation Question 5:

The difference equation representation for a system is:y(n)13y(n1)=2x(n)h(1)=2The natural response of system h(n) is:

  1.  2(13)nu(n)

  2. 32(13)n

  3. 12(13)n

  4. 32(13)n

Answer (Detailed Solution Below)

Option 1 :

 2(13)nu(n)

Z Transform From Difference Equation Question 5 Detailed Solution

Taking z-transform

Y(z)13z1Y(z)=2X(z)

H(z)=Y(z)X(z)=21(13)Z1

Taking inverse z-transform

H(n)=2(13)nu(n)

it satisfied H(1) = 2

Get Free Access Now
Hot Links: teen patti gold real cash all teen patti master teen patti cash game