Transform Theory MCQ Quiz in मल्याळम - Objective Question with Answer for Transform Theory - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 20, 2025

നേടുക Transform Theory ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Transform Theory MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Transform Theory MCQ Objective Questions

Top Transform Theory MCQ Objective Questions

Transform Theory Question 1:

The inverse Laplace transform of 1(s+1)(s2) is

  1. e2t+et3
  2. e2t+et3
  3. e2tet3
  4. e2tet

Answer (Detailed Solution Below)

Option 3 : e2tet3

Transform Theory Question 1 Detailed Solution

Concept:

The Laplace transform of a general exponential signal is given by:

L[eat]1s+a

where 'a' is any positive integer.

Calculation:

Given:

1(s+1)(s2)

1(s+1)(s2)=A(s2)+B(s+1)=13{1s2+1s+1}

L1(1(s+1)(s2))=L1{13(1s21s+1)}=e2tet3

Additional Information

Some common inverse Laplace transforms are:

F(s)

ROC

f(t)

1

All s

δ (t)

1s

Re (s) > 0

u(t)

1s2

Re (s) > 0

t

n!sn+1

Re (s) > 0

tn

1s+a

Re (s) > -a

e-at

1(s+a)2

Re (s) > -a

t e-at

n!(s+a)n

Re (s) > -a

tn e-at

as2+a2

Re (s) > 0

sin at

ss2+a2

Re (s) > 0

cos at

Transform Theory Question 2:

Laplace transform of t cos (at) is

  1. s2+a2(s2a2)2
  2. s(s2a2)2
  3. s2a2(s2+a2)2
  4. s(s2+a2)2

Answer (Detailed Solution Below)

Option 3 : s2a2(s2+a2)2

Transform Theory Question 2 Detailed Solution

Concept:

Laplace transform of f(t):

L {f(t)} = F (s)

Then, Multiplication by tn:           

L {tn f(t)} = (-1)ndndsn [ F(s)]

Now,

L (cos at) = ss2+a2

L {t cos at} = (-1) dds(ss2+a2)

s(2s)(1)(s2+a2)(s2+a2)2

s2a2(s2+a2)2

Transform Theory Question 3:

If f(t) is a function defined for all t ≥ 0, its Laplace transform F(s) is defined as

  1. 0estf(t)dt
  2. 0estf(t)dt
  3. 0eistf(t)dt
  4. 0eistf(t)dt

Answer (Detailed Solution Below)

Option 2 : 0estf(t)dt

Transform Theory Question 3 Detailed Solution

Concept:

This is a definition of Laplace transform

L{f(t)}=0estf(t)dt=f(s)

Some important Laplace transforms are:

L(tn)=n!sn+1

L(tn)=n!sn+1

L(tneat)=n!(sa)n+1

Transform Theory Question 4:

The solution of the differential equation f(t)+f¨(t)=0 with initial conditions f˙(0)=1 and f(0) = 1, for t ≥ 0 is

  1. -cos t + sin t
  2. cos t - sin t
  3. -cos t - sin t
  4. cos t + sin t

Answer (Detailed Solution Below)

Option 4 : cos t + sin t

Transform Theory Question 4 Detailed Solution

Concept:

If L{f(t)} = f(s)

To solve the differential equation:

If f(t) is a function of independent variable 't' then

L {f'(t)} = sL{f(t)} - f(0)

L {f''(t)} = s2 L{f(t)} - sf(0) - f'(0)

L{sin(at)}=as2+a2

L{cos(at)}=ss2+a2

Calculation:

Given:

f(t)+f¨(t)=0 and f(0) = f'(0) = 1.

We know that:

L{f''(t)} = s2L{f(t)} - sf(0) - f'(0)

∴ s2 f(s) - sf(0) - f'(0) + f(s) = 0

∴ f(s)[s2 + 1] - (s + 1) = 0       [∵ f(0) = f'(0) = 1]

f(s)=s+1s2+1

s+1s2+1=ss2+1+1s+1

∵ L-1 f(s) = f(t)

L1(s+1s2+1)=L1(ss2+1+1s+1)

∴ f(t) = cos t + sin t

Transform Theory Question 5:

 If Laplace transform Lf(t)=log(s+as+b), then f(t) equals

  1. 1t(ebteat)
  2. 1t(ebteat)
  3. ebteat
  4. ebteat

Answer (Detailed Solution Below)

Option 1 : 1t(ebteat)

Transform Theory Question 5 Detailed Solution

Concept:

If L{f(t)} = F(s) or L-1 {f(s)} = f(t)

ThenL{tf(t)}=dds{F(s)}

tf(t)=L1{ddsF(s)}

f(t)=1tL1{dds(F(s))}

Calculation:

Given:

Lf(t)=log(s+as+b)

f(t)=L1[log(s+as+b)]=L1{log(s+a)log(s+b)}

1tL1{dds(log(s+a)log(s+b))}=1t{1s+a1s+b}

 

1t(eatebt)=1t(ebteat)

Transform Theory Question 6:

The multiplication of two discrete Fourier transforms (DFTs) is equal to the ______ of two sequences in the time-domain.

  1. Circular convolution
  2. Auto-correlation
  3. Linear convolution
  4. Cross-correlation

Answer (Detailed Solution Below)

Option 1 : Circular convolution

Transform Theory Question 6 Detailed Solution

The correct answer is option 1):(Circular convolution)

Concept:

  • Circular convolution, also known as cyclic convolution, is a special case of periodic convolution, which is the convolution of two periodic functions that have the same period
  • Convolution in the time domain is equal to multiplication in the frequency domain and vice versa.
  • If X(ω) and Y(ω) are the Fourier transforms of x(t) and y(t)

then

x(t) * y(t) = X(ω) × Y(ω)

  • If X(s) and Y(s) are the Laplace transforms of x(t) and y(t), t

hen x(t) * y(t) = X(s) × Y(s)

  • Hence the multiplication of two discrete Fourier transforms (DFTs) is equal to the Circular convolution of two sequences in the time-domain.

Transform Theory Question 7:

The Fourier cosine series for an even function f(x) is given by

f(x)=a0+n=1ancos(nx)

The value of the coefficient a2 for the function f(x) = cos2(x) in [0,π] is

  1. -0.5
  2. 0.0
  3. 0.5
  4. 1.0

Answer (Detailed Solution Below)

Option 3 : 0.5

Transform Theory Question 7 Detailed Solution

Concept:

The Fourier series for the function f(x) in the interval α < x < α + 2π is given by

f(x)=ao2+n=1ancosnx+n=1bnsinnx

where

ao=1παα+2πf(x)dx;an=1παα+2πf(x)cosnxdx;bn=1παα+2πf(x)sinnxdx

When f is an even periodic function of period 2L, then its Fourier series contains only cosine (include possibly, the constant term) terms.

f(x)=ao2+n=1ancosnπxL

When f is an odd periodic function of period 2L, then its Fourier series contains only sine terms.

f(x)=n=1bnsinnπxL

Calculation:

 f(x) = cos2(x)

f(x)=1+cos2x2=12+cos2x2

On comparing with: f(x)=ao2+n=1ancosnπxL

a0 = 1

a1 = 0

a2 = 1/2

Transform Theory Question 8:

Find the Laplace transform of 0eatebttdt

  1. logs+as+b
  2. log(s+bs+a)
  3. 1slogba
  4. 1slogab

Answer (Detailed Solution Below)

Option 3 : 1slogba

Transform Theory Question 8 Detailed Solution

Explanation:

Let F(t) = e-at – e-bt

{L{F(t)} = L{e-at – e-bt}

=1s+a1s+b

Now:

L[eatebtt]=s(1(s+a)1(s+b))ds

=[log(s+a)log(s+b)]s

=[log(s+as+b)]s

=limslog(s+as+b)log(s+as+b)

=limslog(1+a/s1+b/s)log[s+as+b]

=log[1+01+0]+log(s+as+b)1

L[eatebtt]=log(s+bs+a)  ----(1)

∵ By definition

L{F(t)}=oest.F(t)dt

L[eatebtt]=0est[eatebtt]dt  ----(2)

From (1) and (2) 

0est[eatebtt]dt=log(s+bs+a)

Put s = 0

0eatebttdt=logba

LT of 0eatebttdt = LT of logba

L [log(ba)]=1slogba

Transform Theory Question 9:

The Dirac-delta function (δ(t - t0)) for t, t0 ∈ R, has the following property 

abϕ(t)δ(tt0)dt={ϕ(t0)a<t0<b 0otherwise

The Laplace transform of the Dirac-delta function δ(t - a) for a > 0; L(δ(ta))=F(s) is  

  1. eas
  2. e-as
  3. ∞ 
  4. 0

Answer (Detailed Solution Below)

Option 2 : e-as

Transform Theory Question 9 Detailed Solution

Explanation:

Dirac Delta Function

δ(ta)=limϵ0{0,<t<a1ϵ,ata+ϵ0,a+ϵ<t<ϵ

L[δ(t – a)] = e-as

0f(t)δ(ta)dt=f(a)

L[δ(ta)]=0estδ(ta)dt=eas

Transform Theory Question 10:

The Laplace transform of f(t)=1t is

  1. π2s
  2. 12πs
  3. 2πs
  4. πs

Answer (Detailed Solution Below)

Option 4 : πs

Transform Theory Question 10 Detailed Solution

f(t)=1t

L{1t}=t=0est1tdt

Put st = u ⇒ t = u/s

du = s dt ⇒ dt = du/s

L{1t}=u=0eusudus

=1su=0euu12du

=1su=0euu121du

We know that, Γn=0exxn1dx

=1sΓ(12)

We know that, Γ(12)=π

F(s)=πs

Get Free Access Now
Hot Links: teen patti bliss teen patti master 51 bonus teen patti win teen patti rules