Ordinary Differential Equations MCQ Quiz in मल्याळम - Objective Question with Answer for Ordinary Differential Equations - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 15, 2025

നേടുക Ordinary Differential Equations ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Ordinary Differential Equations MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Ordinary Differential Equations MCQ Objective Questions

Top Ordinary Differential Equations MCQ Objective Questions

Ordinary Differential Equations Question 1:

Find Green's function for y" + 5y' + 6y = sin x

  1. 2e2(t-x) + 3et(t-x)
  2. e2(t-x) - e3(t-x)
  3. e(t+x) - e3(t-x)
  4. 2e(t-x) - 3e(t-x)

Answer (Detailed Solution Below)

Option 2 : e2(t-x) - e3(t-x)

Ordinary Differential Equations Question 1 Detailed Solution

Solution - The Green's Function for ODE 

P(x)y" + Q(x)y'+ r(x)y = f(x) is given by 

G(x,t) = 1P(t)y1(x)y2(t)y1(t)y2(x)y1(t)y2(t)y2(t)y1(t) 

y1 and y2 are L.I solution of Homogenous Differential equation 

here the homogenous differential equation is 

y"+5y'+6y=0 

m2+5m+6=0;(m+2)(m+3)=0

y(x)=c1e2x+c2e3x

Now G(x,t) = 1(e2xe3te2te3x)e2t(3e3t)e3t(2e2t)

 G(x,t) = e2(t-x) - e3(t-x)

Therefore, Correct Option is Option 2.

Ordinary Differential Equations Question 2:

For the ordinary differential equation

(x1)d2ydx2 + (cotπx)dydx + (cosec2πx)y=0

which of the following statement is true?

  1. 0 is regular and 1 is irregular.
  2. 0 is irregular and 1 is regular. 
  3. Both 0 and 1 are regular.
  4. Both 0 and 1 are irregular.

Answer (Detailed Solution Below)

Option 1 : 0 is regular and 1 is irregular.

Ordinary Differential Equations Question 2 Detailed Solution

Solution:

 Given Ordinary Differential equation is 

(x1)y+(cotπx)y+(cosec2πx)y=0

Dividing (x-1) in L.H.S and R.H.S 

y+(cotπx)yx1+(cosec2πx)yx1 = 0

Now for x = 0 

limx0(x0)(cotπx)x1 (0/0 form)

Using L' Hospital we get 

limx0xcosπx(x1)(sinπx) (0/0 form)

Again using L' Hospital form we get

L= 1π 

now, limx0x2cosec2πxx1=22π2

for x=1 

limx1x1cotπxx1=

so, 0 is regular point where 1 is irregular 

Therefore Option 1 is correct . 

Ordinary Differential Equations Question 3:

If y(x) = v(x)sec(x) be the solution of y'' - (2tan x)y' + 5y = 0, - π2 < x < π2, satisfying y(0) = 0 and y'(0) = √6 then v(π66) is 

  1. 0.2
  2. 0.4
  3. 0.5
  4. 1

Answer (Detailed Solution Below)

Option 3 : 0.5

Ordinary Differential Equations Question 3 Detailed Solution

Explanation:

y(x) = v sec(x) ⇒ y' = v' sec x + v sec x tan x

⇒ y'' = v'' sec x + v' sec x tan x + v' sec x tan x + v sec x tan2 x + v sec3 x

Substituting these values in the given differential equation 

y'' - (2tan x)y' + 5y = 0

⇒ v'' sec x + v' sec x tan x + v' sec x tan x + v sec x tan2 x + v sec3 x - 2 v' sec x tan x - 2 v sec x tan2 x + 5v sec(x) = 0

⇒ v'' sec x + v sec3 x - v sec x tan2 x + 5v sec(x) = 0  

⇒ v'' sec x + v sec x(sec2 x - tan2 x + 5) = 0

⇒ v'' sec x + 6v sec x = 0 (∵ sec2 x - tan2 x = 1)

⇒ v'' + 6v = 0

⇒ v = c1 cos(√6 x) + c2 sin(√6 x) ...(i)

Given y(0) = 0 and y'(0) = √6 ⇒ v(0) = 0 and v'(0) = √6

Substituting initial conditions 

 v(0) = 0  ⇒ c1 = 0

So v = c2 sin(√6 x)

v' = c2 √6 cos(√6 x)

v'(0) = √6 ⇒ c2 √6 = √6 ⇒ c2 = 1

Hence v = sin(√6 x)

∴ v(π66) =  sin(√6 π66) = sin(π6) = 0.5

∴ Option (3) is correct

Ordinary Differential Equations Question 4:

Consider the system of ordinary differential equations

dxdt= 4x3y2 - x5y4,

dydt= x4y5 + 2x2y3.

Then for this system there exists 

  1. a closed path in {(x, y)  2|x2 + y2 ≤ 5}
  2. a closed path in {(x, y)  2|5 < x2 + y2 ≤ 10}
  3. a closed path in {(x, y)  2|x2 + y2 > 10}    
  4. no closed path in 2

Answer (Detailed Solution Below)

Option 4 : no closed path in 2

Ordinary Differential Equations Question 4 Detailed Solution

Concept:

Bendixon's Criterion: If fx and gy are continuous in a simply connected region 2 and fx + gx ≠ 0 then the system of differential equations

dxdt = f(x,y)

dydt = g(x,y)​

has no closed trajectories inside 

Explanation:

Here f(x,y) = 4x3y2 - x5yg(x,y) = x4y5 + 2x2y3

f= 12x2y2 - 5x4y4, g= 5x4y4 + 6x2y2

Both fx and gy are continuous and 

 fx + gx = 12x2y2 - 5x4y+ 5x4y4 + 6x2y= 18x2y2  ≠ 0 in whole ℝ2 as it is zero on (0,0) only.

Hence by Bendixsion Criterion, there is no closed path in 2

Option (4) is correct.

Ordinary Differential Equations Question 5:

For the following system of ordinary differential equations

dxdt=x(32x2y),

dydt=y(22xy),

the critical point (0, 2) is 

  1. a stable spiral
  2. an unstable spiral
  3. a stable node
  4. an unstable node

Answer (Detailed Solution Below)

Option 3 : a stable node

Ordinary Differential Equations Question 5 Detailed Solution

Concept:

If the eigenvalues of the Jacobian matrix at the critical point are negative then that critical point is an asymptotically stable node

Explanation:

Given system of ordinary differential equations

dxdt=x(32x2y),

dydt=y(22xy),

So F(x,y) = x(3 - 2x - 2y) = 3x - 2x- 2xy and G(x,y) = y(2 - 2x - y) = 2y - 2xy - y2

F= 3 - 4x - 2y, F= - 2x, G= - 2y, G= 2 - 2x - 2y

At (0, 2), F= - 3 - 4 = - 1, F= 0, G= - 4, G= 2 - 0 - 4 = - 2

Hence at (0,2) Jacobian is

J(0,2) = [1042]

This is an upper triangular matrix so eigenvalues are -1, -2.

Both eigenvalues are negative so (0,2) is a stable node.

Option (3) is correct.

Ordinary Differential Equations Question 6:

If y(x) is a solution of the equation

4xy" + 2y' + y = 0

Satisfying y(0) = 1. Then y" (0) is equal to

  1. 1/24
  2. 1/12
  3. 1/6
  4. 1/2

Answer (Detailed Solution Below)

Option 2 : 1/12

Ordinary Differential Equations Question 6 Detailed Solution

Concept:

  • Ordinary Point: A point x = x0 is called an ordinary point of differential equation y'' + P(x)y' + Q(x) = 0, if P(x) and Q(x) are both analytical at x = x0.
  • A singular point x = x0 is called regular singular point if both (x - x0)P(x) and (x - x0)2Q(x) are analytic at x = x0. Otherwise it is called irregular singular point.

  • The indicial equation in variable m for regular singular point x0 is represented by m(m - 1) + pm + q = 0, where p =limxx0(xx0)P(x)  and q = limxx0(xx0)2Q(x).

Calculation:

We have, 4xy" + 2y' + y = 0

⇒ y+12xdydx+14xy=0 

⇒ P(x) = 12x and Q(x) = 14x

⇒ x = 0 is a singular point.

Also, limx0xP(x) = limx0x(12x) = 12 = p

limx0x2Q(x) = limx0x2(14x) = 0 = q

⇒ x = 0 is a regular singular point.

Now, indicial equation for the given differential equation is given by m(m - 1) + pm + q = 0

⇒ m2m+m2=0

⇒ m2m2=0

⇒ m=0,12 [Distinct roots]

Therefore, we get two independent solutions corresponding to two different value of m.

Since, x = x0 is regular singular point, we have to use Forbenious method to get the required solution.

Let, y=n=0anxm+n

⇒ y=n=0(m+n)anxm+n1

⇒ y=n=0(m+n)(m+n1)anxm+n2

Substituting the values of y, y' and y" in the given equation, we have,

4xn=0(m+n)(m+n1)anxm+n2

+2n=0(m+n)anxm+n1+n=0anxm+n = 0

⇒ n=04(m+n)(m+n1)anxm+n1

+n=02(m+n)anxm+n1+n=0anxm+n = 0

Shifting the index of first two terms to m+n, we have

⇒ n=04(m+n+1)(m+n)an+1xm+n

+n=02(m+n+1)an+1xm+n+n=0anxm+n = 0

In general, equating co-efficient of xm+n to zero, we have

⇒ [4(m+n+1)(m+n)+2(m+n+1)]an+1+an=0

⇒ an+1=an[4(m+n+1)(m+n)+2(m+n+1)],n0

When m = 0:

an+1=an[4(n+1)(n)+2(n+1)],n0

a1=a02

a2=a112=a024, and so on.

Therefore, when m=0, one of the solution of y(x) is

y(x)=x0(a0+a1x+a2x2+)

⇒ y(x)=a0+a02+a024x2+.

Substituting the initial condition y(0) = 1, we get a0 = 1

∴ y(x)=1+x2+x224+

⇒ y(x)=12+x12+

⇒ y(x)=112+higher power of x

∴ y(0)=112

The correct answer is Option 2.

Ordinary Differential Equations Question 7:

Let ϕ denote the solution to the boundary value problem (BVP) 

\(\rm \left\{\begin{matrix}(xy')'-2y'+\frac{y}{x}=1,&1

Then the value of ϕ(e) is

  1. e2
  2. e3
  3. e3
  4. e

Answer (Detailed Solution Below)

Option 1 : e2

Ordinary Differential Equations Question 7 Detailed Solution

Concept: 

Second-Order Differential Equations: Solve the homogeneous equation first, then find the particular solution.

Boundary Value Problems: Use boundary conditions to determine the constants in the general solution.

Explanation:
(xy)2y+yx=1,1<x<e4

with boundary conditions y(1)=0,y(e4)=4e4

Rewriting the equation:

The equation is simplified to

 x2yxy+y=x

Let x = ez then it becomes

⇒ {D'(D' - 1) - D' + 1}y = ez

⇒ (D'2 - 2D' + 1)y = ez

Auxiliary equation is

m2 - 2m + 1 = 0

⇒ (m1)2=0

⇒ m=1,1  

CF = C1ez + C2zez 

 i.e., CF = C1x+C2xln(x)

PI = 1(D22D+1)ez

   = ez1((D+1)22(D+1)+1).1

  = ez1D2.1

  = z22ez = x(lnx)22
 
y(x)=C1x+C2xln(x)x(lnx)22

Applying Boundary Conditions:

y(1) = 0:

 C11+C21ln(1)+122.0=0
 
 C1=0

y(e4)=4e4

12e4+C2e4ln(e4)+e4(lne4)22=4e4
   
⇒  C2e44+8e4=4e4

 c2=1
   
y(x)=xlnx+x(lnx)22

⇒ y(e)=e+e2

⇒ y(e)=e2

Hence option 1) is correct.

Ordinary Differential Equations Question 8:

The initial value problem

dydx=cos(xy), x ∈ ℝ, y(0) = y0,

where y0 is a real constant, has

  1. a unique solution
  2. exactly two solutions
  3. infinitely many solutions
  4. no solution

Answer (Detailed Solution Below)

Option 1 : a unique solution

Ordinary Differential Equations Question 8 Detailed Solution

Concept:

Picard’s Existence and Uniqueness Theorem: Consider the Initial Value Problem (IVP) dydx=f(x,y), y(x0) = y0, suppose that f(x, y) and fy are continuous functions in some open rectangle R = {(x, y): a < x < b, c < y < d} that contains the point (x0, y0) . Then the IVP has a unique solution in some closed interval I = [x0 - h,x0 + h] where h > 0.

Explanation: 

dydx=cos(xy), x ∈ ℝ, y(0) = y0,

Here f(x, y) = cos(xy)

fy(x, y) = - x sin(xy)

Both are continuous in a open rectangular region R = {(x, y): a < x < b, c < y < d} containing (0, y0) 

Now, |fy(x, y)| = |-x sin(xy)| = |x||sin(xy)| ≤ |x| < b (as |sin(xy)| ≤ 1 for all x, y ℝ)

Hence by Picard’s existence and uniqueness theorem, 

the given IVP has a unique solution

Option (1) is true

Ordinary Differential Equations Question 9:

Let y0 > 0, z0 > 0 and α > 1. 

({dydt=yα for t>0,y(0)=y0

(∗∗{dzdt=zα for t>0,z(0)=z0

We say that the solution to a differential equation exists globally if it exists for all t > 0. 

Which of the following statements is true? 

  1. Both (∗) and (∗∗) have global solutions
  2. None of (∗) and (∗∗) have global solutions
  3. There exists a global solution for (∗) and there exists a T < ∞ such that limtT|z(t)|=+
  4. There exists a global solution for (∗∗) and there exists a T < such that limtT|y(t)|=+

Answer (Detailed Solution Below)

Option 4 : There exists a global solution for (∗∗) and there exists a T < such that limtT|y(t)|=+

Ordinary Differential Equations Question 9 Detailed Solution

Explanation:

y0 > 0, z0 > 0 and α > 1. 

({dydt=yα for t>0,y(0)=y0

(∗∗{dzdt=zα for t>0,z(0)=z0

Let us assume α = 2

then (∗) 

 dydt=y2,y(0)=y0 

⇒ dyy2 = dt

⇒ 1y = t + c (integrating)

Using y(0) = y0 we get

c = 1y0

⇒ 1y = t 1y0

⇒ y = yo1ty0

y is not defined if

1 - ty0 = 0 ⇒ t = 1y0 > 0  as  y0 > 0

So (∗) does not have a global solution.

(1), (2) are false

limt1y0|y(t)|=+

(4) is correct

If we check (∗∗) by taking α = 2 we can see that (3) is false

Ordinary Differential Equations Question 10:

Consider the ordinary differential equation y" + P(x)y' + Q(x)y = 0 where P and Q are smooth functions. Let y1 and y2 be any two solutions of the ODE. Let W(x) be the corresponding Wronskian. Then which of the following is always true?

  1. If y1 and y2 are linearly dependent then ∃ x1, x2 such that W(x1) = 0 and W(x2) ≠ 0
  2. If y1 and y2 are linearly independent then W(x) = 0 ∀ x
  3. If y1 and y2 are linearly dependent then W(x) ≠ 0 ∀ x
  4. If y1 and y2 are linearly independent then W(x) ≠ 0 ∀ x

Answer (Detailed Solution Below)

Option 4 : If y1 and y2 are linearly independent then W(x) ≠ 0 ∀ x

Ordinary Differential Equations Question 10 Detailed Solution

Concept:

(i) If y1 and y2 are linearly independent then W(x) ≠ 0 ∀ x

(ii) If y1 and y2 are linearly dependent then W(x) = 0 ∀ x

Explanation:

By direct result, (4) is correct only

Get Free Access Now
Hot Links: teen patti gold real cash teen patti flush teen patti online game