Analysis MCQ Quiz in मल्याळम - Objective Question with Answer for Analysis - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 3, 2025

നേടുക Analysis ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Analysis MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Analysis MCQ Objective Questions

Top Analysis MCQ Objective Questions

Analysis Question 1:

Find the limit of sin (y)/x, where (x, y) approaches to (0, 0)?

  1. 1
  2. 0
  3. infinite
  4. doesn't exist

Answer (Detailed Solution Below)

Option 4 : doesn't exist

Analysis Question 1 Detailed Solution

Given:

f(x, y) = \(\frac{siny}{x}\) (x, y) → (0, 0)

Concept Used:

Putting y = mx in the function and checking whether the function is free from m then limit will exist if not then limit will not exist.

Solution:

We have,

f(x, y) = \(\frac{siny}{x}\) (x, y) → (0, 0)

Put y = mx

So, 

lim (x, y) → (0, 0) \(\frac{siny}{x}\)

⇒ lim x → 0 \(\frac{sin mx}{x}\)
 

We cannot eliminate m from the above function.

Hence limit does not exist.

\(\therefore\) Option 4 is correct.

Analysis Question 2:

A function f defined such that for all real x, y 

(i) f(x + y) = f(x).f(y)

(ii) f(x) = 1 + x g(x)

where \(\lim _{x \rightarrow 0} g(x) = 1\) what is \(\frac{df(x)}{dx}\) equal to ?

  1. g(x)
  2. f(x)
  3. g'(x)
  4. g(x) + xg'(x)

Answer (Detailed Solution Below)

Option 2 : f(x)

Analysis Question 2 Detailed Solution

Explanation:

Here, it is given that

(i) f(x + y) = f(x).f(y) and

(ii) f(x) = 1 + x g(x), where \(\lim _{x \rightarrow 0} g(x) = 1\)

Now, writing for y in the given condition. We have

f(x + h) = f(x).f(h)

Then, f(x + h) - f(x) = f(x)f(h) - f(x)

Or \(\frac{f(x+h)-f(x)}{h}= \frac{f(x)[f(h) - 1]}{h}\)

                      = \( \frac{f(x)h. g(h)}{h}=f(x). g(h)\) (using (ii))

Hence, \(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} f(x) \cdot g(h)=f(x) \cdot 1\)

Since, by hypothesis \(\lim_{h \rightarrow 0} g(h) = 1\)

It follows that f'(x) = f(x)

Since, f(x) exists, f'(x) also exists

and f'(x) = f(x) 

⇒ \(\frac{d}{dx} f(x) = f(x)\)

(2) is true.

Analysis Question 3:

How many real roots does the polynomial x4 - 3x3 - x2 + 4 have in between [1,4] ?

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 3 : 2

Analysis Question 3 Detailed Solution

Concept -

If f : [a,b] → \(\mathbb{R}\) and f(a) > 0 and f(b) < 0 then there exist c ∈ (a,b) such that f(c) = 0

Explanation -

We have the polynomial f(x) = x4 - 3x3 - x2 + 4

Now f'(x) = 4x3 - 9x2 - 2x = x( 4x2 - 9x - 2) 

Now for the critical points 

f'(x) = 0

⇒  x( 4x2 - 9x - 2) = 0

⇒ x = 0 or 4x2 - 9x - 2 = 0

Now for 4x2 - 9x - 2 = 0 ⇒ x = \(\frac{9\pm\sqrt{81+ 32}}{8}= \frac{9\pm\sqrt{113}}{8}\)

⇒ we get three critical points of the given polynomial.

Now f(0) = 4 and f(1/2) = 1/16 - 3/8 -1/4 + 4 < 4 and f(1) = 1 - 3 - 1 + 4= 1

Now function is decreasing from 0 to 1.

Now f(2) = 16 - 24 - 4 + 4 = -8 < 0

Hence we get a one real roots in between 1 & 2.

Now f(3) > 0 and f(4) > f(3) 

Hence we get a one real roots in between 2 & 3.

Therefore we get two real roots in between  [1,4].

Hence option(3) is correct. 

Analysis Question 4:

The value of \(\lim_{n \to \infty } n sin (2 \pi e n!)\) is  

  1. 1
  2. π

  3. 2 π 
  4. Does not exist.

Answer (Detailed Solution Below)

Option 3 : 2 π 

Analysis Question 4 Detailed Solution

Explanation -

Let an = n sin(2 π en!) we have 

\(e = \sum_{k=0}^n \frac{1}{k!} + \sum_{k=n+1}^{\infty} \frac{1}{k!} \)

⇒ \(2 \pi e n! = 2\pi r + 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} )\)

Where r is positive integer. so we have

\(lim_{ n \to \infty } n sin( 2\pi r + 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} ))\)

\(lim_{ n \to \infty } n \ sin( 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} ))\)

Further, observe that 

\(\frac{1}{n+1} < ​​n! ( \sum_{k=n+1}^{\infty}\frac{1}{k!}) = \frac{1}{n+1}+ \frac{1}{(n+1)(n+2)}+..... < \frac{1}{n}+ \frac{1}{n^2} + ... = \frac{1}{n-1}\)

By squeeze principle, we have 

\(lim_{n \to \infty }​​n! ( \sum_{k=n+1}^{\infty}\frac{1}{k!}) = lim_{n \to \infty } b_n = 0\) and \(lim_{n \to \infty }n b_n = 1\)

So using the result that \(lim_{x \to 0 } \frac{sinx}{x} = 1\) we get 

\(lim_{n \to \infty } a_n = ​​lim_{n \to \infty } n sin(2 \pi b_n) = ​​lim_{n \to \infty }2 \pi b_n n \frac{sin(2 \pi b_n)}{2 \pi b_n} = 2\pi\)

Hence Option(3) is correct.

Analysis Question 5:

Let f ∈ C1[- π, π ], Define for \(n \in \mathbb{N}\)\(b_n = \int_{-\pi}^{\pi} f(t) sin(nt) dt\),  which of the following is correct? 

  1. b→ 0 as n → ∞ 
  2. nbn → 0 as n → ∞ 
  3. The series \(\sum _{n=1}^{\infty} n^3 b_n^3\) is absolutely convergent.
  4. All the above 

Answer (Detailed Solution Below)

Option 4 : All the above 

Analysis Question 5 Detailed Solution

Concept -

Reimann Lebesgue Lemma -

If the Lebesgue Integral of |f| is finite then the fourier transform of |f| vanishes as its argument does to infinity.

Explanation -

We have the sequence  \(b_n = \int_{-\pi}^{\pi} f(t) sin(nt) dt\)

Note that f(x) being continuous on a compact set is bounded and |sin t | ≤ 1

Therefore  \(|a_n| \le \int_{-\pi}^{\pi} |f(t)|dt \le 2 \pi M\)   ∀ n  where M is bound on f(x).

Thus the sequence {bn} is bounded.

\(b_n = \int_{-\pi}^{\pi} f(t) sin(nt) dt\)

integration by parts, we get 

bn  \([\frac{f(t) cos (nt)}{n}]_{-\pi}^{\pi} - \frac{1}{n} \int_{-\pi}^{\pi} f'(t) cos(nt) dt = - \frac{1}{n} \int_{-\pi}^{\pi} f'(t) cos(nt) dt \)

Since f'(t) is continuous then by Reimann Lebesgue Lemma, which is " If the Lebesgue Integral of |f| is finite then the fourier transform of |f| vanishes as its argument does to infinity. "

Thus in particular, bn and n bn → 0 as n → ∞ 

Hence option (1) and (2) is correct.

For option(iii) -

\(\sum _{n=1}^{\infty} n^3 b_n^3\) is also absolutely convergent because bbeing bounded and and cgs to 0.

Hence the option (3) is correct. 

Hence option(4) is the correct option.

Analysis Question 6:

The series \(\sum{3^n sin(\frac{1}{5^n x})}\) is ______ on the interval [1, ∞ ).

  1. Absolutely convergent
  2. Convergent only
  3. Divergent 
  4. Oscillatory

Answer (Detailed Solution Below)

Option 1 : Absolutely convergent

Analysis Question 6 Detailed Solution

Concept -

(i) ∑ |an | is convergent then ∑ an is absolutely convergent.

(ii) Ratio Test - 

If \(lim_{n \to \infty } \frac{a_{n+1}}{a_n}= p < 1\) then the series  ∑ an is convergent.

Explanation -

We have the series \(∑{3^n sin(\frac{1}{5^n x})}\) 

Now for Absolutely convergent -

\(∑ |{3^n sin(\frac{1}{5^n x})}| \le ∑ \frac{1}{x} \times (\frac{3}{5})^n\)

Now using Ratio Test -

\(lim_{n \to \infty } \frac{a_{n+1}}{a_n}= lim_{n \to \infty } (\frac{3}{5})= \frac{3}{5}< 1\)

Hence the series \(∑ \frac{1}{x} \times (\frac{3}{5})^n\) is convergent and the given series is absolutely convergent.

Hence Option (i) is true.

Analysis Question 7:

The sequence an = \(\rm\frac{1}{n^3}+\frac{1}{(n+1)^3}+\ldots+\frac{1}{(2 n)^3}\) converges to

  1. 0
  2. 1
  3. e
  4. does not converge

Answer (Detailed Solution Below)

Option 1 : 0

Analysis Question 7 Detailed Solution

Concept use:

Cauchy's first theorem on limits: If an is a sequence of positive terms such that 

\(\rm\displaystyle\lim_{n \rightarrow \infty} a_n = l\) then \(\rm\displaystyle\lim_{n \rightarrow \infty}\left(\frac{a_1+a_2+\ldots+a_n}{n}\right) = l\)

 

Explanation:

Let an = \(\rm \frac{n}{(n+n)^3}\) = \(\frac{n}{8n^3}\) = \(\frac{1}{8n^2}\)

⇒ \(\rm\displaystyle\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty}\frac{1}{8n^2}\) = 0

Hence, by Cauchy's first theorem on limits, we have

\(\rm\displaystyle\lim_{n \rightarrow \infty}\left(\frac{a_1+a_2+\ldots+a_n}{n}\right)\) = 0

⇒ \(\rm\displaystyle\lim_{n \rightarrow \infty} \frac{1}{n}\left[\frac{n}{(n+1)^3}+\frac{n}{(n+2)^3}+\ldots+\frac{n}{(2 n)^3}\right]\) = 0

⇒ \(\rm\displaystyle\lim_{n \rightarrow \infty}\left[\frac{1}{(n+1)^3}+\frac{1}{(n+2)^3}+\ldots+\frac{1}{(2 n)^3}\right]\) = 0

Now, \(\rm\displaystyle\lim_{n \rightarrow \infty}\left[\frac{1}{n^3}+\frac{1}{(n+1)^3}+\frac{1}{(n+2)^3}+\ldots+\frac{1}{(2 n)^3}\right]\) = 0

Sequence converges to 0

Option (1) is correct

Analysis Question 8:

If f(x) is differentiable on interval I and ∃ α > 0, such that |f'(x)| ≤ α on I, then f(x) is

  1. continuous but not uniformly continuous on I
  2. uniformly continuous but not continuous on I
  3. uniformly continuous but not differentiable on I
  4. continuous, uniformly continuous and differentiable on I

Answer (Detailed Solution Below)

Option 4 : continuous, uniformly continuous and differentiable on I

Analysis Question 8 Detailed Solution

Concept:

Lagrange's mean value theorem:  Let f(x) be a continuous function in [a, b] and differentiable in (a, b) then there exist a point c ∈ (a, b) such that 

 \(f'(c)= \frac{f(b)-f(a)}{b-a}\)

Explanation:

For x, y ∈ I, by Lagrange's mean value theorem

\(\frac{f(x) - f(y)}{x - y} = f'(c)\) where x < c < y

⇒ f(x) - f(y) = (x - y)f'(c)

⇒ |f(x) - f(y)| = |x - y||f'(c)|

For a given ε > 0 ∃, \(δ = \frac{ε}{\alpha} > 0\) such that

 |f(x) - f(y)| < ε, ∀ |x - y| < δ, x, y ∈ I

Hence, f(x) is uniformly continuous on I.

We know that every uniformly continuous function is also continuous.

Given f(x) is differentiable.

Hence option (4) is true

Analysis Question 9:

Which of the following function is not differentiable at x = 0?

  1. f(x) = sin( |x|x )
  2. \(f(x) =\begin{cases} sin(x^2) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)
  3. \(f(x) =\begin{cases} sin(|x|) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)
  4. f(x) = [x] sin2(πx) where [.] is greatest integer function

Answer (Detailed Solution Below)

Option 3 : \(f(x) =\begin{cases} sin(|x|) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)

Analysis Question 9 Detailed Solution

Concept -

(i) Differentiability -

Let f(x) be a real-valued function defined on an interval [a,b], i.e. f : [a,b] → \(\mathbb{R}\), let a < c < b

If left-hand derivative of f(x) at c is equal to right-hand derivative of f(x) at c then f(x) is differentiable at c. where LHD = \(lim_{x → c^-} \frac{f(x) -f(c)}{x-c} \) and RHD = \(lim_{x → c^+} \frac{f(x) -f(c)}{x-c} \)

(ii) \(sin(x) = x - \frac{x^3}{3!}+ \frac{x^5}{5!}+....\)

(iii) \( lim_{x → 0} \frac{sin x^2}{x} = lim_{x → 0} \frac{x^2-\frac{x^6}{3!}+...}{x}=0\)  

Explanation -

For option (1) -

We have f(x) = sin( |x|x )

Now use the definition of differentiability - 

\(lim_{x → 0} \frac{f(x) -f(0)}{x-0} =\begin{cases} lim_{x → 0} \frac{-sin x^2}{x} & x< 0 \\ lim_{x → 0} \frac{sin x^2}{x} &x>0 \\ 0 & x = 0 \end{cases}\)

⇒ \(lim_{x → 0} \frac{f(x) -f(0)}{x-0} = 0\) as \( lim_{x → 0} \frac{sin x^2}{x} = lim_{x → 0} \frac{x^2-\frac{x^6}{3!}+...}{x}=0\)

Hence the function is differentiable at x = 0. So option (1) is true.

For option (2) -

We have \(f(x) =\begin{cases} sin(x^2) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)

Now use the definition of differentiability - 

\(lim_{x → 0} \frac{f(x) -f(0)}{x-0} =\begin{cases} lim_{x → 0} \frac{sin x^2}{x} & x \in \mathbb{Q} \\ 0 & otherwise \end{cases}\)

⇒ \(lim_{x → 0} \frac{f(x) -f(0)}{x-0} = 0\) as \( lim_{x → 0} \frac{sin x^2}{x} = lim_{x → 0} \frac{x^2-\frac{x^6}{3!}+...}{x}=0\)

Hence the function is differentiable at x = 0. So option (2) is true.

For option (3) -

We have \(f(x) =\begin{cases} sin(|x|) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)

Now use the definition of differentiability - 

\(lim_{x → 0} \frac{f(x) -f(0)}{x-0} =\begin{cases} lim_{x → 0} \frac{-sin x}{x} & x \in \mathbb{Q}, x< 0 \\ lim_{x → 0} \frac{sin x}{x} & x \in \mathbb{Q},x>0 \\ 0 & otherwise \end{cases}\)

⇒ \(lim_{x → 0^-} \frac{f(x) -f(0)}{x-0} = -1 \) and \(lim_{x → 0^+} \frac{f(x) -f(0)}{x-0} = 1 \) as \( lim_{x → 0} \frac{sin x}{x} = lim_{x → 0} \frac{x-\frac{x^3}{3!}+...}{x}=1\)

Hence the function is not differentiable at x = 0. So option (3) is false.

For option (4) -

We have f(x) = [x] sin2(πx) = \(\begin{cases} -sin^2 \pi x & 1 \le x < 0 \\ 0 & 0\leq x\leq 1 \\ \end{cases}\)

Now use the definition of differentiability - 

⇒ \(LHD =lim_{x → 0^-} \frac{f(x) -f(0)}{x-0} = lim_{x → 0^-} \frac{-sin^2 \pi x}{x} = 0\) and \(RHD =lim_{x → 0^+} \frac{f(x) -f(0)}{x-0} = lim_{x → 0^-} \frac{0}{x} = 0\) 

Hence the function is differentiable at x = 0. So option (4) is true.

Therefore option(3) is correct option.

Analysis Question 10:

The least positive value of K > 0 such that |sin2 x - sin2y| ≤ K |x - y| for all real number x and y, is 

  1. 0
  2. 1/2
  3. 1
  4. 1/4

Answer (Detailed Solution Below)

Option 3 : 1

Analysis Question 10 Detailed Solution

Concept -

Mean Value Theorem -

If f(x) is differentiable then \(\frac{|f(x) -f(y)|}{|x-y|} \le sup|f'(t)|\)   

Explanation -

We have |sin2 x - sin2y| ≤ K |x - y|

⇒ \(\frac{|sin^2x-sin^2y|}{|x-y|} \le K\)

Now use Mean Value Theorem, we get -

⇒  K = sup |f'(t)| where f(t) = sin2(t)

⇒  f'(t) = 2 sin(t) cos(t) = sin(2t)

⇒  K = sup |sin(2t)| = 1 

Hence option(3) is correct.

Get Free Access Now
Hot Links: teen patti master new version teen patti master plus teen patti real cash master teen patti teen patti online