Multiple and Sub-multiple Angles MCQ Quiz in मल्याळम - Objective Question with Answer for Multiple and Sub-multiple Angles - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 10, 2025
Latest Multiple and Sub-multiple Angles MCQ Objective Questions
Top Multiple and Sub-multiple Angles MCQ Objective Questions
Multiple and Sub-multiple Angles Question 1:
Suppose sin 2θ = cos 3θ, here 0 < θ < π/2 then what is the value of cos 2θ?
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 1 Detailed Solution
Concept:
Used formulas:
- sin 2θ = 2 sin θ cos θ.
- Cos 2θ = cos2 θ – sin2 θ = 1 – 2 sin2 θ
- cos 3θ = 4cos3 θ – 3cos θ
- sin2 θ + cos2 θ = 1
The table below shows the sign of trigonometric functions in different quadrants:
T – Ratio’s |
Quadrant I |
Quadrant II |
Quadrant III |
Quadrant IV |
Sin |
+ |
+ |
- |
- |
Cos |
+ |
- |
- |
+ |
Cosec |
+ |
+ |
- |
- |
Sec |
+ |
- |
- |
+ |
Tan |
+ |
- |
+ |
- |
Cot |
+ |
- |
+ |
- |
Calculation:
Given: sin 2θ = cos 3θ, 0 < θ < π/2.
As we know that, sin 2θ = 2 sin θ cos θ and cos 3θ = 4cos3 θ – 3cos θ.
⟹ 2 sin θ cos θ = 4cos3 θ – 3cos θ
⟹ 2 sin θ = 4cos2 θ – 3
⟹ 2 sin θ = 4(1 – sin2 θ) – 3 = 4 - 4 sin2 θ – 3
⟹ 4 sin2 θ + 2 sin θ – 1 = 0
Comparing the above equation with quadratic equation ax2 + bx + c = 0, a = 4, b = 2 and c = – 1.
Now substituting the values in the quadratic formula \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
we get,
\(sin\;\theta \; = \;\frac{{ - 2 \pm \sqrt { {2^2} - 4\left( 4 \right)\left( { - 1} \right)} }}{{2\left( 4 \right)}} = \frac{{ - 2 \pm \sqrt {4 + 16} }}{8} = \frac{{ - 2 \pm \sqrt {20} }}{8} = \frac{{ - 1 \pm \sqrt 5 }}{4}\)
Thus, \(sin\;\theta = \frac{{ - 1 \pm \sqrt 5 }}{4}\).
Since, 0 < θ < π/2 ⟹ θ lies between 0° to 90°⟹ all ratios are positive.
\(\Rightarrow sin\;\theta = \frac{{ - 1 + \sqrt 5 }}{4}\)
As we know that, cos 2θ = cos2 θ – sin2 θ = 1 – 2 sin2 θ
\( \Rightarrow \cos 2\theta = \;1 - 2{\left( {\frac{{ - 1 + \sqrt 5 }}{4}} \right)^2} = \frac{{1 + \sqrt 5 }}{4}\)
Multiple and Sub-multiple Angles Question 2:
What is the value of \(\rm \frac{1}{cos \: 330^{\circ}} - \frac{1}{\sqrt{3} \: sin \: 240^{\circ} } = ?\)
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 2 Detailed Solution
Concept:
cos (270° + θ) = sin θ
sin (180° + θ) = - sin θ
sin (60°) = \(\rm \frac{\sqrt{3}}{2}\)
Calculation:
Given:
\(\rm \frac{1}{cos \: 330^{\circ}} - \frac{1}{\sqrt{3} \: sin \: 240^{\circ} } \)
= \(\rm \frac{1}{cos \: (270^{\circ} + 60^{\circ})} - \frac{1}{\sqrt{3} \: sin \: (180^{\circ} + 60^{\circ}) }\)
= \(\rm \frac{1}{sin \: (60^{\circ})} + \frac{1}{\sqrt{3} \: sin \: ( 60^{\circ}) }\)
= \(\rm \frac{2}{\sqrt{3}} + \frac{2}{\sqrt{3} \: \sqrt{3} }\)
= \(\rm \frac{2}{3} (1 + \sqrt{3})\)
The value of \(\rm \frac{1}{cos \: 330^{\circ}} - \frac{1}{\sqrt{3} \: sin \: 240^{\circ} } \) is \(\rm \frac{2}{3} (1 + \sqrt{3})\)
Additional Information
Trigonometrical Ratios
sin (90° + θ) = cos θ cos (90° + θ) = - sin θ tan (90° + θ) = - cot θ cosec (90° + θ) = sec θ sec ( 90° + θ) = - cosec θ cot ( 90° + θ) = - tan θ |
sin (180° + θ) = - sin θ cos (180° + θ) = - cos θ tan (180° + θ) = tan θ cosec (180° + θ) = -cosec θ sec (180° + θ) = - sec θ cot (180° + θ) = cot θ |
sin (270° + θ) = - cos θ cos (270° + θ) = sin θ tan (270° + θ) = - cot θ cosec (270° + θ) = - sec θ sec (270° + θ) = cosec θ cot (270° + θ) = - tan θ |
Multiple and Sub-multiple Angles Question 3:
The expression \(\rm \frac {\sin 4x - \sin 2x}{\cos 4x + \cos 2x} \) is equal to
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 3 Detailed Solution
Concept:
Trigonometry Rule
\(\rm sin C - sin D = 2\sin (\dfrac {C-D}{2}) \cos\; (\dfrac {C +D}{2}) \)
\(\rm cos C + cos D = {2\cos\; (\dfrac {C+D}{2})\;cos\; (\dfrac {C - D}{2})} \)
Calculations:
Given expression is \(\rm \dfrac {\sin 4x - \sin 2x}{\cos 4x + \cos 2x} \)
= \(\rm \dfrac {2sin\; (\dfrac {4x-2x}{2})\;cos\; (\dfrac {4x+2x}{2})}{2cos\; (\dfrac {4x+2x}{2})\;cos\; (\dfrac {4x-2x}{2})} \)
= \(\rm \dfrac {\sin x}{\cos x}\)
= tan x
Hence, the expression \(\rm \dfrac {\sin 4x - \sin 2x}{\cos 4x + \cos 2x} \) is equal to tan x
Multiple and Sub-multiple Angles Question 4:
cos 20∘ + cos 40∘ + cos 140∘ + cos 160∘ = ?
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 4 Detailed Solution
Concept:
Trigonometric Ratios for Allied Angles:
- sin (-θ) = -sin θ.
- cos (-θ) = cos θ.
- sin (2nπ + θ) = sin θ.
- cos (2nπ + θ) = cos θ.
- sin (nπ + θ) = (-1)n sin θ.
- cos (nπ + θ) = (-1)n cos θ.
- \(\rm \sin \left [(2n+1)\frac{\pi}{2}+\theta \right ]\) = (-1)n cos θ.
- \(\rm \cos \left [(2n+1)\frac{\pi}{2}+\theta \right ]\) = (-1)n (-sin θ).
Calculation:
We know that cos (π - θ) = -cos θ.
∴ cos 20∘ + cos 40∘ + cos 140∘ + cos 160∘
= cos 20∘ + cos 40∘ + cos (180∘ - 40∘) + cos (180∘ - 20∘)
= cos 20∘ + cos 40∘ - cos 40∘ - cos 20∘
= 0
Multiple and Sub-multiple Angles Question 5:
If sin α + sin β = p and cos α + cos β = q, then find the value of \(\rm {1\over 2}\ sin(\alpha + \beta) \).
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 5 Detailed Solution
Concept:
(a + b)2 = a2 + b2 + 2ab
cos (a - b) = cos a. cos b + sin a. sin b
sin 2a = 2sin a .cos a
sin (a + b) = sin a. cos b + sin b. cos a
sin2a + cos2a = 1
sin a + sin b = 2 sin [(a + b)/2] ⋅ cos [(a - b)/2]
Calculation:
sin α + sin β = p
squaring both the sides,
(sin α + sin β)2 = p2
sin2 α + sin2 β + 2sin α.sin β = p2 ....(i)
cos α + cos β = q
squaring both the sides,
(cos α + cos β)2 = q2
cos2 α + cos2 β + 2cos α.cos β = q2 ....(ii)
Adding equ (i) and (ii)
sin2 α + sin2 β + cos2 α + cos2 β + 2sin α.sin β + 2cos α.cos β = p2 + q2
1 + 1 + 2(sin α.sin β + cos α.cos β) = p2 + q2
2 + 2(sin α.sin β + cos α.cos β) = p2 + q2
2[1 + sin α.sin β + cos α.cos β] = p2 + q2
1 + sin α.sin β + cos α.cos β = \(\rm \frac{p^2 + q^2}{2}\)
1 + cos (α - β) = \(\rm \frac{p^2 + q^2}{2}\) ....(iii)
Now
p \(\times\) q = (sin α + sin β) \(\times\) (cos α + cos β)
= sin α.cos α + sin β.cos β + sin α.cos β + sin β.cos α
= \(\rm \frac{sin 2\alpha + sin 2\beta }{2}\) + sin (α + β)
= sin (α + β) . cos (α - β) + sin (α + β)
= sin (α + β)[cos (α - β) + 1]
From equ (iii) we can write
= sin (α + β) \(\times\)\(\rm \frac{p^2 + q^2}{2}\)
sin (α + β) = \(\rm \frac{pq}{\frac{p^2 + q^2}{2}}\)
sin (α + β) = \(\rm \frac{2pq}{p^{2} + q^{2}}\)
\(\rm {1\over 2}\ sin(\alpha + \beta) \) = \(\rm \frac{pq}{p^{2} + q^{2}}\)
Multiple and Sub-multiple Angles Question 6:
Evaluate , \(\rm \frac{\cos 7x\ +\ \cos 6x\ +\ \cos5x }{\sin 7x\ +\ \sin 6x\ +\ \sin 5x}\) .
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 6 Detailed Solution
Concept:
- sin A + sin B = \(\rm 2sin\left ( \frac{A+B}{2} \right )\cos \left ( \frac{A-B}{2} \right )\)
- cos A + cos B = \(\rm 2cos\left ( \frac{A+B}{2} \right )\cos \left ( \frac{A-B}{2} \right )\)
Calculation:
We have , \(\rm \frac{\cos 7x\ +\ \cos 6x\ +\ \cos5x }{\sin 7x\ +\ \sin 6x\ +\ \sin 5x}\)
We know that,
sin A + sin B = \(\rm 2sin\left ( \frac{A+B}{2} \right )\cos \left ( \frac{A-B}{2} \right )\)
cos A + cos B = \(\rm 2cos\left ( \frac{A+B}{2} \right )\cos \left ( \frac{A-B}{2} \right )\)
using the above formula , we get
= \(\rm \frac{(\cos 7x\ +\ \cos 5x\ ) +\ \cos6x }{(\sin 7x\ +\ \sin 5x\ )+\ \sin 6x}\)
= \(\rm \frac{ 2cos\left ( \frac{7x+5x}{2} \right )\cos \left ( \frac{7x-5x}{2} \right )+\cos 6x}{2sin\left ( \frac{7x+5x}{2} \right )\cos \left ( \frac{7x-5x}{2} \right )+\sin 6x}\)
= \(\rm \frac{2 \cos 6x\ \cos x +\cos 6x }{2 \sin 6x\ \cos x +\sin6x}\)
= \(\rm \frac{\cos6x\ \times (2 \ cosx + 1)}{\sin6x\ \times(2 \ cosx + 1)}\)
= cot 6x .
The correct option is 4
Multiple and Sub-multiple Angles Question 7:
Find the value of sin 450°
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 7 Detailed Solution
Concept:
sin (2nπ + θ) = sin θ, n ∈ Integer
sin 90° = 1
Calculation:
We have to find the value of sin 450°
sin 450° = sin (360° + 90°)
= sin (2π + 90°) (∵ π = 180°)
= sin 90° (∵ sin (2nπ + θ) = sin θ)
= 1
Multiple and Sub-multiple Angles Question 8:
Find the value of expression: cos (π / 15) cos (2π / 15) cos (4π / 15) cos (7π / 15)?
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 8 Detailed Solution
Concept:
- Sin 2x = 2 sin x cos x
- 2 sin x cos y = sin (x + y) + sin (x - y)
Calculation:
Given: cos (π / 15) cos (2π / 15) cos (4π / 15) cos (7π / 15)
By dividing and multiplying the given expression with 2 sin (π / 15), we get
⇒ cos (π / 15) cos (2π / 15) cos (4π / 15) cos (7π / 15)
\(= \frac{{2\sin \left( {\frac{\pi }{{15}}} \right)}}{{2\sin \left( {\frac{\pi }{{15}}} \right)}} \times \cos \left( {\frac{\pi }{{15}}} \right) \times \;\cos \left( {\frac{{2\pi }}{{15}}} \right) \times \cos \left( {\frac{{4\pi }}{{15}}} \right) \times \cos \left( {\frac{{7\pi }}{{15}}} \right)\)
\(= \frac{{2\sin \left( {\frac{\pi }{{15}}} \right) \times \;\cos \left( {\frac{\pi }{{15}}} \right)}}{{2\sin \left( {\frac{\pi }{{15}}} \right)}} \times \cos \left( {\frac{{4\pi }}{{15}}} \right) \times \cos \left( {\frac{{7\pi }}{{15}}} \right)\)
As we know that, sin 2x = 2 sin x cos x
⇒ cos (π / 15) cos (2π / 15) cos (4π / 15) cos (7π / 15)
= [sin (2π / 15) / 2 sin (π / 15)] × cos (2π / 15) cos (4π / 15) cos (7π / 15)
= [2 sin (2π / 15) × cos (2π / 15) / 2 × 2 sin (π / 15)] cos (4π / 15) cos (7π / 15)
As we know that, sin 2x = 2 sin x cos x
= [sin (4π / 15) / 4 sin (π / 15)] × cos (4π / 15) cos (7π / 15)
= [2 × sin (4π / 15) × cos (4π / 15) / 2 × 4 sin (π / 15)] × cos (7π / 15)
As we know that, sin 2x = 2 sin x cos x
= [sin (8π / 15) / 8 × sin (π / 15)] × cos (7π / 15)
= [2 × sin(8π / 15) × cos (7π / 15)] / 2 × 8 × sin (π / 15)
As we know that, 2 sin x cos y = sin (x + y) + sin (x - y)
= [sin π + sin (π / 15)] / 16 sin (π / 15)
As we know that, sin π = 0
⇒ cos (π / 15) cos (2π / 15) cos (4π / 15) cos (7π / 15) = sin (π / 15) / 16 sin (π / 15) = 1 / 16.
Multiple and Sub-multiple Angles Question 9:
If tan A = x +1 and tan B = x – 1, then x2 tan (A - B) = ?
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 9 Detailed Solution
Concept:
I. \(\tan \left( {A - B} \right) = \frac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\)
Calculation:
Given: tan A = x +1 and tan B = x – 1
As we know that, \(\tan \left( {A - B} \right) = \frac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\)
\(\Rightarrow \tan \left( {A - B} \right) = \frac{{\left( {x + 1} \right) - \left( {x - 1} \right)}}{{1 + \left( {x + 1} \right)\;\left( {x - 1} \right)}}\)
\(\Rightarrow \tan \left( {A - B} \right) = \frac{2}{{{x^2}}}\)
⇒ x2 tan (A - B) = 2Multiple and Sub-multiple Angles Question 10:
If cos x = 1/2 then find the value of cos 3x ?
Answer (Detailed Solution Below)
Multiple and Sub-multiple Angles Question 10 Detailed Solution
CONCEPT:
cos 3x = 4 cos3 x - 3 cos x
CALCULATION:
Given: cos x = 1/2
As we know that, cos 3x = 4 cos3 x - 3 cos x
⇒ cos 3x = (1/2) - (3/2) = -1
Hence, the correct option is 2.