Elementary Properties and Identities MCQ Quiz in मल्याळम - Objective Question with Answer for Elementary Properties and Identities - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Apr 4, 2025
Latest Elementary Properties and Identities MCQ Objective Questions
Top Elementary Properties and Identities MCQ Objective Questions
Elementary Properties and Identities Question 1:
\(\sin \left[ {3\ {{\sin }^{ - 1}}\left( {\frac{1}{5}} \right)} \right] = \)
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 1 Detailed Solution
Concept - Use trigonometric identities.
\(sin3A=3sinA - 4 sin^3A\)
Solution - Let
\(sin^{-1}\frac{1}{5}= A \Rightarrow sinA = \frac{1}{5} \)
Now \( sin\left [ 3sin^{-1}\left ( \frac{1}{5} \right ) \right ] = sin\left ( 3A \right ) \)
so use the formula -
\( sin3A = 3sinA - 4sin^{3}A \)
\( = 3(\frac{1}{5})-4(\frac{1}{5})^3\)
\( = \frac{3}{5} -\frac{4}{125}\)
\( = \frac{75-4}{125} \)
\( = \frac{71}{125} \)
Elementary Properties and Identities Question 2:
If x takes a non-positive permissible value, then sin-1 x will be-
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 2 Detailed Solution
Calculation:
Let sin-1 x = y. Then x = sin y
Since, \(- 1 \le x \le 0,\)
therefore \(\frac{{ - \pi }}{2} \le {\sin ^{ - 1}}x \le 0\) and so \(\frac{{ - \pi }}{2}\)\(\le y \le 0\)
We have,
cos y = \(\sqrt {1 - {{\sin }^2}y}\)
\(\Rightarrow \cos y = \sqrt {1 - {x^2}} ,\) for \(0 \le y \le \pi\) ....(i)
Now, \(- \frac{\pi }{2} \le y \le 0 \Rightarrow \frac{\pi }{2} \ge - y \ge 0\) [From (i)]
\(\Rightarrow \cos ( - y) = \sqrt {1 - {x^2}}\)
\(\Rightarrow - y = {\cos ^{ - 1}}\sqrt {1 - {x^2}}\)
\( \Rightarrow y = - {\cos ^{ - 1}}\sqrt {1 - {x^2}} \)
Elementary Properties and Identities Question 3:
If tan-1 a + tan-1 b = π/4, ab < 1, then find the value of a + b + ab?
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 3 Detailed Solution
Concept:
\({\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\frac{{x + y}}{{1 - xy}}} \right],\;xy < 1\)
Calculation:
Given: tan-1 a + tan-1 b = π/4
As we know that, \({\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\frac{{x + y}}{{1 - xy}}} \right],\;xy < 1\)
\( ⇒ {\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left[ {\frac{{a + b}}{{1 - ab}}} \right]\)
⇒ tan-1 [a + b / 1 - ab] = π/4
⇒ [a + b / 1 - ab] = tan (π/4) = 1
⇒ a + b = 1 - ab
⇒ a + b + ab = 1
Elementary Properties and Identities Question 4:
Find the value of x for the equation 2 tan-1 (cos x) = tan-1 (2 cosec x) ?
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 4 Detailed Solution
Concept:
2 tan-1 x = tan-1 (2x / 1- x2), - 1 ≤ x ≤ 1
Calculation:
Given: 2 tan-1 (cos x) = tan-1 (2 cosec x)
As we know that, 2 tan-1 x = tan-1 (2x / 1- x2), - 1 ≤ x ≤ 1
⇒ 2 tan-1 (cos x) = tan-1 (2 cos x / 1 - cos2 x)
As we know that, sin2 x + cos2 x = 1
⇒ 2 tan-1 (cos x) = tan-1 (2 cos x / sin2 x)
⇒ tan-1 (2 cos x / sin2 x) = tan-1 (2 cosec x) = tan-1 (2 / sin x)
⇒ 2 cos x / sin2 x = 2 / sin x
⇒ cos x sin x - sin2 x = 0
⇒ sin x (cos x - sin x) = 0
⇒ sin x = 0 or cos x - sin x = 0
⇒ x = 0 or π/4
As we can see that for x = 0 the given equation does not exist
Hence, x = π/4 is the only solution for the given equation.
Elementary Properties and Identities Question 5:
If \({\sin ^{ - 1}}\,x + {\cot ^{ - 1}}\left( {\frac{1}{2}} \right) = \frac{\pi }{2}\) then x is
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 5 Detailed Solution
Concept -
Use trigonometric identities
\(sin^{-1}x + cos^{-1}x=\frac{\pi }{2}\)
Solution -
The given question is also written in the form
\(cot^{-1}\left ( \frac{1}{2} \right )=\frac{\pi }{2}-sin^{-1}x\)
Now use the identity
\(cot^{-1}\left ( \frac{1}{2} \right )=cos^{-1}x\)............(i)
Let \(cot^{-1}\left ( \frac{1}{2} \right )=A\Rightarrow \frac{1}{2}=cotA\)
\(\frac{cosA}{sinA}=\frac{1}{2}\)
\(\frac{cos^2A}{sin^2A}=\frac{1}{4}\)
\(4cos^2A=sin^2A\)
\(4cos^2A= 1-cos^2A \)
Now \(cosA = \frac{1}{\sqrt{5}}\) then
\(A = cos^{-1}\frac{1}{\sqrt{5}}\)
put the value of A we get
\(cot^{-1}\left ( \frac{1}{2} \right )=cos^{-1}\frac{1}{\sqrt{5}}\)
put this value in equation (i) we get
\(cos^{-1}\frac{1}{\sqrt{5}}=cos^{-1}x\)
Now taking cos of both side we get the value of x
\(x=\frac{1}{\sqrt{5}}\)
So the final answer is \(x=\frac{1}{\sqrt{5}}\) hence option 2 is correct.
Elementary Properties and Identities Question 6:
If \(sin\left(sin^{-1}\frac{1}{5}+cos^{-1}x\right)=1 \), then what is x equal to?
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 6 Detailed Solution
Concept:
\(sin^{-1}x+cos^{-1}x=\frac{\pi}{2}\)
Calculation:
\(sin\left(sin^{-1}\frac{1}{5}+cos^{-1}x\right)=1 \)
⇒ \(sin^{-1}\frac{1}{5}+cos^{-1}x=sin^{-1}(1) \)
⇒ \(sin^{-1}\frac{1}{5}+cos^{-1}x=\frac{\pi}{2}\)
Since \(sin^{-1}x+cos^{-1}x=\frac{\pi}{2}\)
⇒ x = \(\frac{1}{5}\)
∴ The value of x is \(\frac{1}{5}\)
Elementary Properties and Identities Question 7:
If tan-1 (2x / 1 - x2) + cot-1 (1 - x2 / 2x) = π/3 such that -1 < x < 1 then find the value of x?
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 7 Detailed Solution
Concept:
tan-1 (1/x) = cot x, x > 0
tan-1 x + tan-1 y = tan-1 (x + y) / (1 - xy), xy < 1
Calculation
Given: tan-1 (2x / 1 - x2) + cot-1 (1 - x2 / 2x) = π/3 such that -1 < x < 1
As we know that, tan-1 (1/x) = cot x, x > 0
⇒ cot-1 (1 - x2 / 2x) = tan-1 (2x / 1 - x2)
⇒ 2 tan-1 (2x / 1 - x2) = π/3
⇒ tan-1 (2x / 1 - x2) = π/6
⇒ 2x / 1 - x2 = 1/√3
⇒ x2 + 2√3 x - 1 = 0
By comparing the above equation with ax2 + bx + c = 0, we get
⇒ a = 1, b = 2√3 and c = -1
By using the formula x = [-b ± √(b2 - 4ac)] / 2a, we get
⇒ x = 2 - √3 or - (2 + √3)
But as it is given that -1 < x < 1 ⇒ x ≠ - (2 + √3)
Hence, x = 2 - √3
Elementary Properties and Identities Question 8:
sin\(\rm(tan^{-1}\frac{4}{5}+tan^{-1}\frac{4}{3}+tan^{-1}\frac{1}{9}-tan^{-1}\frac{1}{7})=\)
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 8 Detailed Solution
Calculation:
Given
\(\sin\rm(\tan^{-1}\frac{4}{5}+\tan^{-1}\frac{4}{3}+\tan^{-1}\frac{1}{9}-\tan^{-1}\frac{1}{7})\)
We know that \(\tan^{-1}a +\tan^{-1}b =\tan^{-1} \left( \frac{a+b}{1-ab} \right)\) and \(\tan^{-1}a -\tan^{-1}b =\tan^{-1} \left( \frac{a-b}{1+ab} \right)\)
\(\sin\rm(\tan^{-1}\frac{4}{5}+\tan^{-1}\frac{4}{3}+\tan^{-1}\frac{1}{9}-\tan^{-1}\frac{1}{7})\) = \(\sin\rm\Big[(\tan^{-1}\frac{4}{3}+\tan^{-1}\frac{1}{9})+ (\tan^{-1}\frac{4}{5} -\tan^{-1}\frac{1}{7})\big]\)
= \(\sin\rm\Big[\tan^{-1} \left( \frac{\frac{4}{3} + \frac{1}{9}}{1-\frac{4}{27}} \right)+ \tan^{-1}\Big(\frac{\frac{4}{5}-\frac{1}{7}}{1+\frac{4}{35}}\Big)\Big]\)
= \(\sin\rm(\tan^{-1} \left( \frac{39/27}{23/27} \right) + \tan^{-1} \left( \frac{23/35}{39/35} \right) )\)
= \(\sin\rm(\tan^{-1} \left( \frac{39}{23} \right) + \tan^{-1} \left( \frac{23}{39} \right) )\)
= \(\sin(\tan^{-1} \left( \frac{39/23+23/39}{1-1} \right) )\)
= \(\sin(\tan^{-1} \left( \frac{2050/897}{0} \right) )\)
= \(\sin(\tan^{-1} \infty )\) = sin(π/2) = 1
∴ \(\sin\rm(\tan^{-1}\frac{4}{5}+\tan^{-1}\frac{4}{3}+\tan^{-1}\frac{1}{9}-\tan^{-1}\frac{1}{7})\) = 1
The correct answer is option (4).
Elementary Properties and Identities Question 9:
Find the value of \(\tan^{-1}{3\over4} + 2\cot^{-1}{1\over3} = \)?
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 9 Detailed Solution
Concept:
\(\rm 2\tan^{-1}{x} = \tan^{-1}{2x\over1 - x^2}\)
\(\rm \cot^{-1}{x}= {π\over2} -\tan^{-1}{x}\)
Calculation:
Let S = \(\tan^{-1}{3\over4} + 2\cot^{-1}{1\over3}\)
S = \(\tan^{-1}{3\over4} + 2\left({π\over2}- \tan^{-1}{1\over3}\right)\) [∵ \(\rm \cot^{-1}{x}= {π\over2} -\tan^{-1}{x}\)]
S = \(\tan^{-1}{3\over4} + π- 2\tan^{-1}{1\over3}\)
S = \( π +\tan^{-1}{3\over4} - \tan^{-1}{2\times{1\over3}\over1 - ({1\over3})^2}\)
S = \( π +\tan^{-1}{3\over4} - \tan^{-1}{3\over4}\)
S = π
Elementary Properties and Identities Question 10:
If \(\sin \left( {{{\sin }^{ - 1}}\frac{1}{5} + {{\cos }^{ - 1}}x} \right) = 1\), then find the value of x?
Answer (Detailed Solution Below)
Elementary Properties and Identities Question 10 Detailed Solution
Concept:
If sin θ = x then θ = sin-1 x
sin-1 (sin θ) = θ, ∀ θ ∈ [-π/2, π/2]
sin-1 x + cos-1 x = π / 2, where x ∈ [-1, 1]
Calculation:
Given: \(\sin \left( {{{\sin }^{ - 1}}\frac{1}{5} + {{\cos }^{ - 1}}x} \right) = 1\)
As we know that, if sin θ = x then θ = sin-1 x
⇒ sin-1 (1/5) + cos-1 x = sin-1 (1)
As we know that, sin π/2 = 1
⇒ sin-1 (1/5) + cos-1 x = sin-1 (sin π/2)
As we know that, sin-1 (sin θ) = θ, ∀ θ ∈ [-π/2, π/2]
⇒ sin-1 (1/5) + cos-1 x = π/2
As we know that, sin-1 x + cos-1 x = π / 2, where x ∈ [-1, 1]
Hence, x = 1/5