Complex Number elements MCQ Quiz in मल्याळम - Objective Question with Answer for Complex Number elements - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 4, 2025

നേടുക Complex Number elements ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Complex Number elements MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Complex Number elements MCQ Objective Questions

Top Complex Number elements MCQ Objective Questions

Complex Number elements Question 1:

If |23+i13i0i1i1|=A+iB

where i1 ,  then what is A+B equal to?

  1. -10
  2. -6
  3. 0
  4. 6

Answer (Detailed Solution Below)

Option 2 : -6

Complex Number elements Question 1 Detailed Solution

Calculation:

Determinant Δ = a(eifh)b(difg)+c(dheg)

Now, For our matrix, 

a=2,b=3+i,c=1,d=3i,e=0,f=i,g=1,h=i,i=1

calculate the subdeterminants

⇒ eifh=(0)(1)(i)(i)=0(1)=1

⇒ difg=(3i)(1)(i)(1)=3i+i=3

⇒ dheg=(3i)(i)(0)(1)=3i+i2=3i1=13i

⇒ Δ = 2(1)(3+i)(3)+(1)(13i)

⇒ Δ = 293i+1+3i

 Δ=6+0i

Since we are given that  comparing the real and imaginary parts, we find:

A  = -6 and B = 0

Thus A + B = -6 + 0 = - 6

Hence, the Correct answer is Option 2.

Complex Number elements Question 2:

If |z1| = |z2| and amp z1 + amp z2 = 0, then z1 and z2 are two complex numbers such that they are:

  1. None of these
  2. Equal
  3. negative to each other
  4. conjugate to each other
  5. None of the above/More than one of the above.

Answer (Detailed Solution Below)

Option 4 : conjugate to each other

Complex Number elements Question 2 Detailed Solution

Solution:

For a complex number to be equal they must have equal magnitude as well as equal amplitude.

For two complex numbers to be negative to each other then the sum of their real parts must be 0. i.e.,

For z = a + ib

its negative complex number is -a + ib

For two complex number to be conjugate to each other, their magnitude should be equal and their amplitude must be of opposite polarity. i.e., amp z1 = - amp z2

⇒ amp z1 + amp z2 = 0

Hence, the given condition is of two complex number to be conjugate of each other.

Complex Number elements Question 3:

Comprehension:

Direction: Let A(θ)=[sinθicosθ icosθsinθ] where i = √-1

Consider the following statements

I. A(θ) is invertible for all θ ∈ R

II. A(θ)-1 = A(-θ)

Which of the above statement(s) is/are correct?

  1. Only I
  2. Only II
  3. Both I and II
  4. Neither I nor II

Answer (Detailed Solution Below)

Option 1 : Only I

Complex Number elements Question 3 Detailed Solution

Calculation:

We are given the following matrix:

A(θ)=[sinθicosθicosθsinθ]

The determinant of A(θ) is calculated as follows:

det(A(θ))=sin2θ(icosθ)(icosθ)=sin2θ+cos2θ=1

Since the determinant is 1 (non-zero), matrix Aθ  is invertible for all θ in R

Therefore, Statement I is correct.

We first compute the inverse of A(θ)-1 using the formula for the inverse of a 2x2 matrix:

A(θ)1=1det(A(θ))[sinθicosθicosθsinθ]

Since the determinant is 1, we have:

A(θ)1=[sinθicosθicosθsinθ]

Now, let’s compute A(-θ) :

A(θ)=[sin(θ)icos(θ)icos(θ)sin(θ)]

Using the trigonometric identitiessin(θ)=sin(θ) and cos(θ)=cos(θ) we get:

A(θ)=[sinθicosθicosθsinθ]

This is not equal toA(θ)1, because the signs are different.

Therefore, Statement II is not correct.

Hence, the correct answer is: Option (1)

Complex Number elements Question 4:

Comprehension:

Direction: Let A(θ)=[sinθicosθ icosθsinθ] where i = √-1

If B(θ)=A(π2θ), then AB euqals

  1. [0i i0]
  2. [0i i0]
  3. [10 01]
  4. None of these

Answer (Detailed Solution Below)

Option 1 : [0i i0]

Complex Number elements Question 4 Detailed Solution

Calculation:

We are given two matrices:

A(θ)=[sinθicosθicosθsinθ]

B(θ)=A(π2θ)=[sin(π2θ)icos(π2θ)icos(π2θ)sin(π2θ)]

Using the trigonometric identities:

sin(π2θ)=cos(θ)

cos(π2θ)=sin(θ)

The matrix B(θ) becomes:

B(θ)=[cosθisinθisinθcosθ]

Now, compute the matrix product AB :

AB=[sinθicosθicosθsinθ][cosθisinθisinθcosθ]

Performing the matrix multiplication:

AB=[sinθcosθ+icosθisinθsinθisinθ+icosθcosθicosθcosθ+sinθisinθicosθisinθ+sinθcosθ]

Simplifying the terms:

AB=[icos2θ+sin2θisinθcosθ+sinθcosθisinθcosθ+cosθsinθicos2θ+sin2θ]

Now, simplify further:

AB=[0ii0]

Hence, the correct answer is Option (1).

Complex Number elements Question 5:

Which of the following determinants is purely real?

I. |21+i3 1i02+i 32i1|

II. |1i2 i2i 0i2|

III. |63i22+i6 3+i203i8 2i63+i811|

  1. I and II
  2. II and III
  3. I and III
  4. I, II and III

Answer (Detailed Solution Below)

Option 4 : I, II and III

Complex Number elements Question 5 Detailed Solution

Calculation:

Statement I

Expanding along the first row

Δ = 2[0 - (2 + i) (2 - i)] - (1 + i)[(1 - i) - 3(2 + i)] + 3 (1 - i)(2 - i) 

⇒ Δ =  - 2 (4 - i2) - (1 + i) (- 5 - 4i) + 3 (2 + i2 - 3i)

⇒ Δ = - 10 + 5 + 9i - 4 + 3 - 9i = - 6 which is real.

Statement II

Expanding along the first row

Δ = 1 (- 4 - i2) - i(2i) + 2(- i2)

⇒ Δ = - 3 - 2 + 2 = - 3 which is real.

Statement III

Expanding along the first row

Δ = √6 [-(3 - i√8)(3 + i√8)] - (3 - i√2) [√11(3 + i√2) - (2 - i√6)(3 - i√8)] + (2 + i√6)(3 + i√2)(3 + i√8)

⇒ Δ = -√6 [9 - 8i2] - √11 (9 - 2i2) + (3 - i√2)(2 - i√6)(3 - i√8) + (2 + i√6)(3 + i√2)(3 + i√8)

⇒ Δ = - 17√6 - 11√11 + (2 - i√6) (9 - 4 - i6√2 - i3√2) + (2 + i√6) (9 - 4 + i6√2 + i3√2)

⇒ Δ = - 17√6 - 11√11 + (2 - i√6) (5 - 9i√2) + (2 + i√6) (5 + 9i√2) 

⇒ Δ = - 17√6 - 11√11 + 10 - 9√12 - 18i√2 - 5i√6 + 10 - 9√12 + 18i√2 + 5i√6 

⇒ Δ = - 17√6 - 11√11 + 20 - 18√12 which is real.

∴ Determinant of all the 3 statement are purely real.

Get Free Access Now
Hot Links: teen patti palace teen patti circle teen patti octro 3 patti rummy teen patti master list