Trigonometric Function MCQ Quiz - Objective Question with Answer for Trigonometric Function - Download Free PDF

Last updated on Jul 8, 2025

Latest Trigonometric Function MCQ Objective Questions

Trigonometric Function Question 1:

If limx0cos2x+acos4xbx4 = L (finite) then a + b equals to 

  1. -1
  2. 0
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 1 : -1

Trigonometric Function Question 1 Detailed Solution

Answer (1)

Sol.

limx0cos2x+acos4xbx4=L

limx02cos2x1+acos4xbx4=L(1)

To get the finite value,

1 + a – b = 0 

⇒ a=b1...(2)

Apply L Hospital 

limx04cosx(sinx)+4acos3x(sinx)4x3

limx04cosx+4acos3x4x3(sinxx)

To get the finite value, a = –1

Also from (1)

b = 0 

∴ a = b = -1

Trigonometric Function Question 2:

limxπ2(1xπ2x3(π2)3cos(t13)dt) is equal to

  1. 3π8
  2. 3π24
  3. 3π28
  4. 3π4
  5. 9π8

Answer (Detailed Solution Below)

Option 3 : 3π28

Trigonometric Function Question 2 Detailed Solution

Calculation

limxπ2(1xπ2x3(π2)3cos(t13)dt)

Using L’hopital rule 

limxπ20cosx×3x22(xπ2)

limxπ2sin(xπ2)2(xπ2)×3π24

3π28

Hence option 3 is correct

Trigonometric Function Question 3:

What is limxπ62sin2x+sinx12sin2x3sinx+1 equal to?

  1. 12
  2. 13
  3. -2
  4. -3
  5. -5

Answer (Detailed Solution Below)

Option 4 : -3

Trigonometric Function Question 3 Detailed Solution

Calculation:

We have to find the value of limxπ62sin2x+sinx12sin2x3sinx+1

limxπ62sin2x+sinx12sin2x3sinx+1=limxπ62sin2x+2sinxsinx12sin2x2sinxsinx+1

=limxπ62sinx(sinx+1)1(sinx+1)2sinx(sinx1)1(sinx1)

=limxπ6(2sinx1)(sinx+1)(2sinx1)(sinx1)

=limxπ6(sinx+1)(sinx1)=(12+1)(121)=(32)(12)=3

∴ Option 4 is correct.

Trigonometric Function Question 4:

What is limxπ2(secθtanθ) equal to? 

  1. -1
  2. 0
  3. 1/2
  4. 1

Answer (Detailed Solution Below)

Option 2 : 0

Trigonometric Function Question 4 Detailed Solution

Explanation:

limxπ2(secθtanθ)

limxπ21sinθcosθ[00 Form]

limxπ2(cosθsinθ)=0  (using L' hospital rule)

∴ Option (b) is correct.

Trigonometric Function Question 5:

limxπ2(1xπ2x3(π2)3cos(t13)dt) is equal to

  1. 3π8
  2. 3π24
  3. 3π28
  4. 3π4
  5. π 

Answer (Detailed Solution Below)

Option 3 : 3π28

Trigonometric Function Question 5 Detailed Solution

Calculation

limxπ2(1xπ2x3(π2)3cos(t13)dt)

Using L’hopital rule 

limxπ20cosx×3x22(xπ2)

limxπ2sin(xπ2)2(xπ2)×3π24

3π28

Hence option 3 is correct

Top Trigonometric Function MCQ Objective Questions

limx0(1cosx2(1cosx))

  1. 1/2
  2. 2
  3. √2
  4. None of these

Answer (Detailed Solution Below)

Option 3 : √2

Trigonometric Function Question 6 Detailed Solution

Download Solution PDF

Formula used:

limx0(sin xx)=1

 

Calculation:

limx0(1cosx2(1cosx))

Since, 1 - cos 2θ = sin2θ

⇒ limx0(2sin2x22(2sin2x2))

 12limx0(x22×sinx22(sin2x2)×x22)

∴  22limx0(sinx22x22)×(x2sinx2)2 = √2

Evaluate limx01cos2xx2

  1. 0
  2. 1
  3. 2
  4. does not exists

Answer (Detailed Solution Below)

Option 3 : 2

Trigonometric Function Question 7 Detailed Solution

Download Solution PDF

Concept:

limx0sinxx=1

Trigonometry formulas:

1 - cos 2x = 2sin2 x

1 + cos 2x = 2cos2 x

 

Calculation:

Here, we have to find the value of the limit limx01cos2xx2

As we know, 1 - cos 2x = 2sin2 x

limx01cos2xx2

limx02sin2xx2

= 2 × limx0sinxx×limx0sinxx

= 2 × 1 × 1

= 2

limx0sin(2+x)sin(2x)x=?

  1. 12cos2
  2. 1
  3. 2 cos 2
  4. 9

Answer (Detailed Solution Below)

Option 3 : 2 cos 2

Trigonometric Function Question 8 Detailed Solution

Download Solution PDF

Concept:

sin(a) - sin(b) = 2 cos(a+b2) sin(ab2)......(1)

limx0sinxx=1.........(2)

Explanation:

We are given limx0 sin(2+x)sin(2x)x 

limx0 2cos((2+x)+(2x)2)sin((2+x)(2x)2)x (Using equation 1)

limx0 2cos(2) sin(x)x

2cos(2) limx0sinxx 

⇒ 2 cos (2) × 1 (Using equation 2

⇒ 2 cos 2

Evaluate: limx0tanxsinxsin3x

  1. 1
  2. 12
  3. 13
  4. 2

Answer (Detailed Solution Below)

Option 2 : 12

Trigonometric Function Question 9 Detailed Solution

Download Solution PDF

Calculation:

We have,

limx0tanxsinxsin3x

limx0sinxcosxsinxsin3x      (∵ tan x = sin x/cos x)

limx0sinx(1cosx)cosxsin3x

limx0(1cosx)cosxsin2x

limx0(1cosx)cosx(1cos2x)      (∵ sin2 x = 1 - cos2 x)

limx0(1cosx)cosx(1+cosx)(1cosx)      

limx01cosx(1+cosx)

12 is the correct limit.

Evaluate limx0sin4xtan2x

  1. 2
  2. 12
  3. 1
  4. 0

Answer (Detailed Solution Below)

Option 1 : 2

Trigonometric Function Question 10 Detailed Solution

Download Solution PDF

Concept:

limxa[f(x)g(x)]=limxaf(x)limxag(x),providedlimxag(x)0

limx0tanxx=1

limx0sinxx=1

 

Calculation:

Here, we have to find the value of the limit limx0sin4xtan2x

limx0sin4xtan2x

limx0sin4x4x×4xtan2x2x×2x

limx01×4x1×2x

42

= 2

What is the value of limx0sinxtan3x?

  1. 14
  2. 13
  3. 12
  4. 1

Answer (Detailed Solution Below)

Option 2 : 13

Trigonometric Function Question 11 Detailed Solution

Download Solution PDF

Concept:

  • limx0sinxx=1
  • limx0tanxx=1

Calculation:

Given: limx0sinxtan3x

We know that 180° = π Radian

1° = π /360  x° = πx/180 

limx0sinxtan3x=limx0sinπx180tan3πx180 

limx0sinπx180πx180×πx180tan3πx1803πx180×3πx180=limx0πx1803πx180=13

∴ Option 2 is correct.


 

What is limx02(1cosx)x2 equal to?

  1. 0
  2. 1 / 2
  3. 1 / 4
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Trigonometric Function Question 12 Detailed Solution

Download Solution PDF

Concept:

Formula: limx0sinxx=1

L-Hospital Rule: Let f(x) and g(x) be two functions

Suppose that we have one of the following cases,

I. limxaf(x)g(x)=00

II. limxaf(x)g(x)=

Then we can apply L-Hospital Rule:

limxaf(x)g(x)=limxaf(x)g(x) 

Note: We have to differentiate both the numerator and denominator with respect to x unless and until limxaf(x)g(x)=l00 where l is a finite value.

Calculation:

We have to find the value of limx02(1cosx)x2

limx02(1cosx)x2                      Form of limit is (0/0)

Applying L-Hospital rule, we get

=limx02(0+sinx)2x

=limx0sinxx

= 1

What is limx0(1cosx)x+11 equal to?

  1. 0
  2. 1 / 2
  3. 1 / 4
  4. 1

Answer (Detailed Solution Below)

Option 1 : 0

Trigonometric Function Question 13 Detailed Solution

Download Solution PDF

Concept:

Formula: limx0sinxx=1

L-Hospital Rule: Let f(x) and g(x) be two functions

Suppose that we have one of the following cases,

I. limxaf(x)g(x)=00

II. limxaf(x)g(x)=

Then we can apply L-Hospital Rule:

limxaf(x)g(x)=limxaf(x)g(x)

Note: We have to differentiate both the numerator and denominator with respect to x unless and until limxaf(x)g(x)=l00 where l is a finite value.

Calculation:

We have to find the value of limx0(1cosx)x+11

limx0(1cosx)x+11                      Form of limit is (0/0)

Applying L-Hospital rule, we get

=limx0(0+sinx)12x+1

= 0

limx01cos34xx2 is equal to

  1. 0
  2. 12
  3. 24
  4. 36

Answer (Detailed Solution Below)

Option 3 : 24

Trigonometric Function Question 14 Detailed Solution

Download Solution PDF

Concept:

L’ Hospital’s rule:

If limxaf(x)g(x)=00 then we have to differentiate both the numerator and denominator with respect to x unless and until limxaf(x)g(x)=l00 where l is a finite value.

Calculation:

Given: limx01cos34xx2

limx01cos34xx2=00

By applying L hospital’s rule we get

limx01cos34xx2=limx012cos24xsin4x2x

limx012cos24xsin4x2x=limx024(cos24xsin4x)4x

limx024(cos24xsin4x)4x=24×limx0cos24x×limx0sin4x4x

limx01cos34xx2=24×1×1=24

What is limxπ62sin2x+sinx12sin2x3sinx+1 equal to?

  1. 12
  2. 13
  3. -2
  4. -3

Answer (Detailed Solution Below)

Option 4 : -3

Trigonometric Function Question 15 Detailed Solution

Download Solution PDF

Calculation:

We have to find the value of limxπ62sin2x+sinx12sin2x3sinx+1

limxπ62sin2x+sinx12sin2x3sinx+1=limxπ62sin2x+2sinxsinx12sin2x2sinxsinx+1

=limxπ62sinx(sinx+1)1(sinx+1)2sinx(sinx1)1(sinx1)

=limxπ6(2sinx1)(sinx+1)(2sinx1)(sinx1)

=limxπ6(sinx+1)(sinx1)=(12+1)(121)=(32)(12)=3

∴ Option 4 is correct.
Get Free Access Now
Hot Links: happy teen patti teen patti all app teen patti gold real cash