Roots of Unity MCQ Quiz - Objective Question with Answer for Roots of Unity - Download Free PDF

Last updated on Apr 23, 2025

Latest Roots of Unity MCQ Objective Questions

Roots of Unity Question 1:

If ω is an imaginary cube root of unity, then (1 + ω - ω2)5 equals to:

  1. -32
  2. 32
  3. -32ω
  4. 32ω2
  5. 32ω
Enroll For Free Now

Answer (Detailed Solution Below)

Option 3 : -32ω

Roots of Unity Question 1 Detailed Solution

Concept

If ω  is an imaginary cube root of unity, we have the following properties: 

  • ω3  = 1
  • 1 + ω + ω2 = 0 ⇒ ω2 = -1 - ω  

 

Calculation

Given that (1 + ω - ω2)5

Now, let's simplify the expression (1 + ω - ω2)

⇒ 1 + ω - (-1 - ω) = 1 + ω + 1 + ω  = 2 + 2ω  = 2(1 + ω) 

Next, we need to evaluate (1 + ω - ω2)5

(1 + ω - ω2)5 = (2(1 + ω))5 

We know that 1 + ω + ω2 = 0,

So 1 + ω = -ω2

Substitute back into the expression

⇒ (2(ω2))5=(2ω2)5=((2)5(ω2)5)=32ω10

Since ω3=1ω9=1ω10=ω

∴ -32ω10 = -32ω 

Option 3 is correct 

Roots of Unity Question 2:

If ω ≠ 1 is a cube root of unity, then what is (1 + ω - ω2)100 + (1 - ω + ω2)100 equal to?  

  1. 2100 ω2
  2. 2100 ω 
  3. 2100
  4. -2100

Answer (Detailed Solution Below)

Option 4 : -2100

Roots of Unity Question 2 Detailed Solution

Explanation:

(1+ω +ω2)100(1-ω +ω2)100

= (– ω2 – ω2 )100 + (–ω – ω)100  {∵ 1 + ω  + ω2 = 0}

= 2100200 + ω100)

= 21002 + ω)     (∵ ω3 = 1)

= –2100 

∴ Option (d) is correct

Roots of Unity Question 3:

Let integers a, b ∈ [–3, 3] be such that a + b ≠ 0. Then the number of all possible ordered pairs (a, b), for which |zaz+b|=1 and |z+1ωω2ωz+ω21ω21z+ω| = 1, z ∈ C, where ω and ω2 are the roots of x2 + x + 1 = 0, is equal to _______.

Answer (Detailed Solution Below) 10

Roots of Unity Question 3 Detailed Solution

a, b ∈ I, –3 ≤ a, b 3, a + b ≠ 0

|z – a| = |z + b|

|z+1ωω2ωz+ω21ω21z+ω|=1

|zzzωz+ω21ω21z+ω|=1

z|111ωz+ω21ω21z+ω|=1

z|100ωz+ω2ω1ωω21ω2z+ωω2|=1

⇒ z3 = 1

⇒ z = ω , ω2, 1

Now

|1 - a| = |1 + b|

⇒ 10 pair

Roots of Unity Question 4:

If ω is an imaginary cube root of unity, then (1 + ω - ω2)5 equals to:

  1. -32
  2. 32
  3. -32ω
  4. 32ω2

Answer (Detailed Solution Below)

Option 3 : -32ω

Roots of Unity Question 4 Detailed Solution

Concept

If ω  is an imaginary cube root of unity, we have the following properties: 

  • ω3  = 1
  • 1 + ω + ω2 = 0 ⇒ ω2 = -1 - ω  

 

Calculation

Given that (1 + ω - ω2)5

Now, let's simplify the expression (1 + ω - ω2)

⇒ 1 + ω - (-1 - ω) = 1 + ω + 1 + ω  = 2 + 2ω  = 2(1 + ω) 

Next, we need to evaluate (1 + ω - ω2)5

(1 + ω - ω2)5 = (2(1 + ω))5 

We know that 1 + ω + ω2 = 0,

So 1 + ω = -ω2

Substitute back into the expression

⇒ (2(ω2))5=(2ω2)5=((2)5(ω2)5)=32ω10

Since ω3=1ω9=1ω10=ω

∴ -32ω10 = -32ω 

Option 3 is correct 

Roots of Unity Question 5:

If ω ≠  1 is a cube root of unity, for equation (z - 1)3 + 27 = 0

Statement I: roots are -2, 1 - 3ω, 1 - 3ω2

Statement II: Sum of roots is 0.

Statement III: Product of roots is -26.

Which of the above statement(s) is/are correct.

  1. Only I
  2. I and III
  3. I, II and III
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : I and III

Roots of Unity Question 5 Detailed Solution

Concept:

Cube roots of Unity

Cube roots of unity are given by 1, ω, ω2, where

ω = 1+32ω2132

Some Results Involving Complex Cube Root of Unity (ω)

(i) ω3 = 1

(ii) 1 + ω + ω2 = 0

(iii) ω2 = 1ω

(iv) ω̅  = ω2

Calculation:

Statement I: roots are -2, 1 - 3ω, 1 - 3ω2

(z -1)3 = - 27

⇒ (z -1) = (- 27)1/3 

⇒ (z -1) = - 3 ⋅ (1)1/3 

⇒ z  =  - 3 ⋅ (1) 1/3  + 1

⇒ z  =  1 - 3 ⋅ (1) 1/3 

Cube root of unity are 1, ω, ω2

For 1, z  =  1 - 3 ⋅ 1 ⇒ z  =  1 - 3 =  - 2

For ω, z  =  1 - 3 ⋅ ω ⇒ z  =  1 - 3ω 

For ω2z  =  1 - 3 ⋅ ω2 ⇒ z  =  1 - 3ω

Statement I is correct.

Statement II: Sum of roots is 0

Roots of the equations (z -1)3 + 27 = 0 are - 2, 1 - 3ω, 1 - 3ω

Sum of roots = (- 2) + (1 - 3ω) + (1 - 3ω2

 = - 3ω - 3ω⇒ - 3(ω + ω2) = -3(-1) = 3

Statement II is incorrect.

Statement III: Product of roots is 1

Product of roots = (-2) (1 - 3ω)(1 - 3ω2)

 = (-2) (1 - 3ω- 3ω + 9ω3)

 = (-2)(10 - 3(ω2 + ω))

 = (-2)(10 + 3)

 = -26

Statement III is correct.

∴ I and III are correct.

Top Roots of Unity MCQ Objective Questions

The value of ω6 +  ω7 + ω5 is

  1. ω5
  2. 1
  3. 0
  4. ω 

Answer (Detailed Solution Below)

Option 3 : 0

Roots of Unity Question 6 Detailed Solution

Download Soln PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω = 1+i32 and ω2 = 1i32

 

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω3n = 1

 

Calculation:

ω6 +  ω7 + ω5

= ω5 (ω + ω2 + 1)

= ω5 × (1 + ω + ω2)

= ω5 × 0

= 0

The value of ω3n + ω3n+1 + ω3n+2, where ω is cube roots of unity, is

  1. -1
  2. 1+i32
  3. 1
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Roots of Unity Question 7 Detailed Solution

Download Soln PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω =  1+i32 and ω21i32

 

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

 

Calculation:

We have to find the value of ω3n + ω3n+1 + ω3n+2

⇒ ω3n + ω3n+1 + ω3n+2 

=  ω3n (1 + ω + ω2)           (∵ 1 + ω + ω2 = 0)

= 1 × 0 = 0

If 1, ω,  ω2 are the cube roots of unity then the roots of the equation (x - 1)+ 8 = 0 are

  1. -1, 1 + 2ω1 + 2ω2, 
  2. -1, 1 - 2ω1 - 2ω2
  3. -1, 1, 2
  4. -2, -2ω-2ω2

Answer (Detailed Solution Below)

Option 2 : -1, 1 - 2ω1 - 2ω2

Roots of Unity Question 8 Detailed Solution

Download Soln PDF

Concept 

Cube Roots of unity are 1, ω and ω2

Here, ω = 1+i32 and ω2 = 1i32

Property of cube roots of unity:

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

 

Calculation:

Given that,

(x - 1)+ 8 = 0

⇒ (x - 1)3 = (-2)3

⇒ (x - 1) = -2(1)1/3

(x - 1) = -2(1, ω,  ω2)

⇒ x = -1, 1 - 2ω, 1 - 2ω2  

What is ω100 + ω200 + ω300 equal to, where ω is the cube root of unity? 

  1. 1
  2. 2
  3. 0

Answer (Detailed Solution Below)

Option 4 : 0

Roots of Unity Question 9 Detailed Solution

Download Soln PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω = 1+i32 and ω21i32

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1


Calculation:

We have to find the value of ω100 + ω200 + ω300

⇒ ω100 + ω200 + ω300

= ω99 ω + ω198 ω2 + (ω3)100

= (ω3)33 ω + (ω3)66 ω2 + 1     (∵ ω3 = 1)

= ω + ω2 + 1

= 0                       (∵ 1 + ω + ω2 = 0)

What is 1+ω21+ω equal to, where ω is the cube root of unity?

  1. 1
  2. ω 
  3. ω2
  4. iω, where i=1

Answer (Detailed Solution Below)

Option 2 : ω 

Roots of Unity Question 10 Detailed Solution

Download Soln PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω = 1+i32  and ω21i32

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ωsum
  • ω3n = 1


Calculation:

We have to find the value of 1+ω21+ω

As we know that 1 + ω + ω2 = 0

⇒ 1 + ω2 = - ω and 1 + ω = - ω2

Now,

1+ω21+ω=ωω2=1ω×ω2ω2=ω2ω3=ω2=ω

 

The value of ( -1 + i√3 )48 is

  1. 28
  2. 216
  3. 232
  4. 248

Answer (Detailed Solution Below)

Option 4 : 248

Roots of Unity Question 11 Detailed Solution

Download Soln PDF

Concept:

Cube Roots of unity are 1, ω and ω2

Here, ω = (1+i3)2   and ω2(1i3)2

Some properties of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0


Calculation:

Given expression is  ( -1 + i√3 )48 

Since,  ω = (1+i3)2

∴ 2ω = -1 + i√3 

∴ (2ω)48 = (-1 + i√3 )48 

∴ (-1 + i√3 )48 = 2483)16

∴ (-1 + i√3 )48 = 248, as  ω3 = 1

Find the value of (1 - ω + ω2)2 + (1 - ω+ ω)2

  1. 2
  2. -2
  3. 4
  4. -4

Answer (Detailed Solution Below)

Option 4 : -4

Roots of Unity Question 12 Detailed Solution

Download Soln PDF

Concept:

1 + ω + ω2 = 0

 ω= 1

 

Calculation:

 (1 - ω + ω2)2 + (1 - ω+ ω)2

⇒ {(1 + ω2) - ω}2 + {(1+ ω) - ω2}2

(- ω - ω)2 + (-ω2 - ω2 )2 ,since 1 + ω + ω2 = 0 

2 + 4ω4

4(ω2 + ω) since, ω= 1

- 4

If α, β, γ are the cube roots of any number p(p < 0), then for any three numbers x, y, z; xα+yβ+zγxβ+yγ+zα is equal to:

  1. 12(1+i3)
  2. 12(1+i3)
  3. 12(1i3)
  4. None of these

Answer (Detailed Solution Below)

Option 4 : None of these

Roots of Unity Question 13 Detailed Solution

Download Soln PDF

Concept 

Cube Roots of unity are 1, ω and ω2

Here, ω = 1+i32 and ω2 = 1i32

Property of cube roots of unity

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

Calculation:

Given: α, β, γ are the cube roots

Let z3 = p (p < 0)

Let p  = - q where q > 0

⇒  z3 = -q 

So, the roots of the above equation will be, 

Assume α = q, β = qω, γ = qω2

(Because the magnitude of each root will be q)

Now,

xα+yβ+zγxβ+yγ+zα

=p(x+yω+zω2)p(xω+yω2+z)

=x+yω+zω2xω+yω2+z×ωω

=1ω×xω+yω2+zω3xω+yω2+z

=1ω×xω+yω2+zxω+yω2+z            (∵ ω3 = 1)

=1ω=ω2

=1i32

What is the least possible degree of polynomial with real coefficient having 2ω2, 3 + 4ω, 3 + 4ω2, 5 - ω - ω2 as roots

  1. 4
  2. 8
  3. 5
  4. 3

Answer (Detailed Solution Below)

Option 3 : 5

Roots of Unity Question 14 Detailed Solution

Download Soln PDF

First of all, we should not think that because of the 4 roots, the degree of the polynomial will be 4.

We need to remember that complex roots always occur in pairs.

Now,

ω=cos2π3+isin2π3

=12+32i

ω2=cos4π3+isin4π3

=1232i

Now, to find the value of the given pair roots,

1) 2ω2 = -1 - √3 i

-1 + √3i will also be a root.

2) 3 + 4ω = 3 - 2 + 2√3i

= 1 + 2√3i

1 - 2√3i will also be a root.

3) 3 + 4ω2 = 3 - 2 - 2√3i

= 1 - 2√3i

i.e, 3 + 4ω and 3 + 4ω2 are conjugate pairs.

4) 5ωω2=5+1232i+12+32i

= 6

i.e. 6 is a root.

Total we have 5 roots.

The minimum degree of the polynomial is 5.

The value of (1+i32)n+(1i32)n where n is not a multiple of 3 and i=1, is

  1. 1
  2. -1
  3. i
  4. -i

Answer (Detailed Solution Below)

Option 2 : -1

Roots of Unity Question 15 Detailed Solution

Download Soln PDF

Concept:

  • ω = 1+i32 and ω2 = 1i32 where ω is cube root of unity.
  • ω3k=1,ω(3k+1)=ωandω(3k+2)=ω2
  • 1+ω+ω2=0

 

Calculation:

Given that,

(1+i32)n+(1i32)n where n is not a multiple of 3.

ωn+ω2n[ω=1+i3,2,ω2=1i32]

Here n is not a multiple of 3 so,

Put n = 3k + 1 where k is integer k =1, 2, 3 …..

ω3k+1+ω6k+2

ω3k.ω1+ω6k.ω2[ω3k=1]

ω+ω2[1+ω+ω2=0]

⇒ -1
Hot Links: teen patti gold apk teen patti star teen patti joy official