Parallel Vectors MCQ Quiz - Objective Question with Answer for Parallel Vectors - Download Free PDF

Last updated on May 1, 2025

Latest Parallel Vectors MCQ Objective Questions

Parallel Vectors Question 1:

If iaj+5kand 3i6j+bk are parallel vectors then b is equal to?

  1. 5
  2. 10
  3. 15
  4. More than one of the above

Answer (Detailed Solution Below)

Option 3 : 15

Parallel Vectors Question 1 Detailed Solution

Concept:

If aandb are two vectors parallel to each other then a=λb or a×b=0

Calculation:

Given:

 iaj+5k and 3i6j+bk are parallel vectors,

Therefore, iaj+5k=λ(3i6j+bk)

Equating the coefficient of i,jandk

⇒ 1 = 3λ, ∴ λ = 1/3            

⇒ -a = -6λ 

⇒ 5 = bλ                 .... (1)

Put the value of λ in equation (1), we get

5 = b × (1/3)

So, b = 15

Parallel Vectors Question 2:

Let ABCDEF be a regular hexagon. If AD=mBC and CF=nAB then what is mn equal to 

  1. -1
  2. -2
  3. 2
  4. 4

Answer (Detailed Solution Below)

Option 1 : -1

Parallel Vectors Question 2 Detailed Solution

Calculation:

qImage67ef6767ae1217d7a29720b6

AB=2FC

AB=2CF

n=12

Also,

AD=2BCm=2

Now,

mn=2(12)=1

∴ The final value of  is -1.

Parallel Vectors Question 3:

Let P(3,2,6) be a point in space and Q be a point on the line r=(i^j^+2k^)+μ(3i^+j^+5k^). Then the value of μ for which the vector PQ is parallel to the plane x4y+3z=1 is:

  1. 14
  2. 14
  3. 18
  4. 18

Answer (Detailed Solution Below)

Option 1 : 14

Parallel Vectors Question 3 Detailed Solution

Calculation

Given

r=(i^j^+2k^)+μ(3i^+j^+5k^)

Any point on the vector r can be taken as,

Q{(13μ),(μ1),(5μ+2)} gives

PQ={3μ2,μ3,5μ4}

Now, the PQ must be perpendicular to the normal for the given plane.

⇒ 1(3μ2)4(μ3)+3(5μ4)=0 

3μ24μ+12+15μ12=0 

8μ=2

μ=14

Hence option (1) is correct

Parallel Vectors Question 4:

The value of λ for which the vectors 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂ are parallel is

  1. 23
  2. 32
  3. 52
  4. 25

Answer (Detailed Solution Below)

Option 1 : 23

Parallel Vectors Question 4 Detailed Solution

Concept:

If two vectors  a1î + b1ĵ + c1k̂ and a2î + b2ĵ + c2k̂ are parallel then

a1a2=b1b2=c1c2.

Calculation:

Given two vectors are 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂.

Given two vectors are parallel.

⇒ 32=64=1λ

∴  λ = 23

The value of λ is 23.

The correct answer is option 1.

Parallel Vectors Question 5:

Find the unit vector which is paralleled to the addition of two vectors r1 = 3i2j and r2 = – 4i+4j

  1. 1/5(i2j)
  2. 1/5 (i2j)
  3. 1/5(i+2j)
  4. 1/5(i+2j)

Answer (Detailed Solution Below)

Option 3 : 1/5(i+2j)

Parallel Vectors Question 5 Detailed Solution

Concept:

The unit vector in the direction of a is given by, a^ = a|a| where |a| is the magnitude of the vector.

Calculation:

Given, r1 = 3i2j and r2 = – 4i+4j

∴ R = r1 + r2 = i+2j

⇒ |R| = (1)2+22 = 5

⇒ Unit vector, R1^ = R|R|

= 15(i+2j)

∴ The unit vector which is paralleled to the addition of two vectors is 1/5(i+2j).

The correct answer is Option 3.

Top Parallel Vectors MCQ Objective Questions

If iaj+5kand 3i6j+bk are parallel vectors then b is equal to?

  1. 5
  2. 10
  3. 15
  4. 20

Answer (Detailed Solution Below)

Option 3 : 15

Parallel Vectors Question 6 Detailed Solution

Download Solution PDF

Concept:

If aandb are two vectors parallel to each other then a=λb or a×b=0

Calculation:

Given:

 iaj+5k and 3i6j+bk are parallel vectors,

Therefore, iaj+5k=λ(3i6j+bk)

Equating the coefficient of i,jandk

⇒ 1 = 3λ, ∴ λ = 1/3            

⇒ -a = -6λ 

⇒ 5 = bλ                 .... (1)

Put the value of λ in equation (1), we get

5 = b × (1/3)

So, b = 15

If xi2j+3k and 2i4j+yk are parallel vectors then x is equal to?

  1. 3
  2. 2
  3. -1
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Parallel Vectors Question 7 Detailed Solution

Download Solution PDF

Concept:

If aandb are two vectors parallel to each other then a=λb or a×b=0

Calculation:

Given:

 xi2j+3k and 2i4j+yk are parallel vectors,

Therefore, xi2j+3k=λ(2i4j+yk)

Equating the coefficient of i,iandk

⇒ x = 2λ                    .... (1)

⇒ -2 = -4λ 

∴ λ = 1/2

Put the value of λ in equation (1), we get

x = 2 × (1/2)

So, x = 1

The value of λ for which the vectors 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂ are parallel is

  1. 23
  2. 32
  3. 52
  4. 25

Answer (Detailed Solution Below)

Option 1 : 23

Parallel Vectors Question 8 Detailed Solution

Download Solution PDF

Concept:

If two vectors  a1î + b1ĵ + c1k̂ and a2î + b2ĵ + c2k̂ are parallel then

a1a2=b1b2=c1c2.

Calculation:

Given two vectors are 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂.

Given two vectors are parallel.

⇒ 32=64=1λ

∴  λ = 23

The value of λ is 23.

The correct answer is option 1.

Find a unit vector parallel to the vector -2î + 3ĵ.

  1. 2i^13+3j^13
  2. 2i^11+3j^11
  3. 2i^15+3j^15
  4. 1

Answer (Detailed Solution Below)

Option 1 : 2i^13+3j^13

Parallel Vectors Question 9 Detailed Solution

Download Solution PDF

Concept:

Unit vector parallel to a=a^=a|a|

Calculation:

Let a = -2î + 3ĵ

|a|=(2)2+32=13

∴ Unit vector parallel to a=a^=a|a|

113(2i^+3j^)

2i^13+3j^13

Let ABCDEF be a regular hexagon. If AD=mBC and CF=nAB then what is mn equal to 

  1. -1
  2. -2
  3. 2
  4. 4

Answer (Detailed Solution Below)

Option 1 : -1

Parallel Vectors Question 10 Detailed Solution

Download Solution PDF

Calculation:

qImage67ef6767ae1217d7a29720b6

AB=2FC

AB=2CF

n=12

Also,

AD=2BCm=2

Now,

mn=2(12)=1

∴ The final value of  is -1.

Parallel Vectors Question 11:

If iaj+5kand 3i6j+bk are parallel vectors then b is equal to?

  1. 5
  2. 10
  3. 15
  4. 20

Answer (Detailed Solution Below)

Option 3 : 15

Parallel Vectors Question 11 Detailed Solution

Concept:

If aandb are two vectors parallel to each other then a=λb or a×b=0

Calculation:

Given:

 iaj+5k and 3i6j+bk are parallel vectors,

Therefore, iaj+5k=λ(3i6j+bk)

Equating the coefficient of i,jandk

⇒ 1 = 3λ, ∴ λ = 1/3            

⇒ -a = -6λ 

⇒ 5 = bλ                 .... (1)

Put the value of λ in equation (1), we get

5 = b × (1/3)

So, b = 15

Parallel Vectors Question 12:

If xi2j+3k and 2i4j+yk are parallel vectors then x is equal to?

  1. 3
  2. 2
  3. -1
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Parallel Vectors Question 12 Detailed Solution

Concept:

If aandb are two vectors parallel to each other then a=λb or a×b=0

Calculation:

Given:

 xi2j+3k and 2i4j+yk are parallel vectors,

Therefore, xi2j+3k=λ(2i4j+yk)

Equating the coefficient of i,iandk

⇒ x = 2λ                    .... (1)

⇒ -2 = -4λ 

∴ λ = 1/2

Put the value of λ in equation (1), we get

x = 2 × (1/2)

So, x = 1

Parallel Vectors Question 13:

The value of λ for which the vectors 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂ are parallel is

  1. 23
  2. 32
  3. 52
  4. 25

Answer (Detailed Solution Below)

Option 1 : 23

Parallel Vectors Question 13 Detailed Solution

Concept:

If two vectors  a1î + b1ĵ + c1k̂ and a2î + b2ĵ + c2k̂ are parallel then

a1a2=b1b2=c1c2.

Calculation:

Given two vectors are 3î − 6ĵ + k̂ and 2î − 4ĵ + λk̂.

Given two vectors are parallel.

⇒ 32=64=1λ

∴  λ = 23

The value of λ is 23.

The correct answer is option 1.

Parallel Vectors Question 14:

Find a unit vector parallel to the vector -2î + 3ĵ.

  1. 2i^13+3j^13
  2. 2i^11+3j^11
  3. 2i^15+3j^15
  4. 1

Answer (Detailed Solution Below)

Option 1 : 2i^13+3j^13

Parallel Vectors Question 14 Detailed Solution

Concept:

Unit vector parallel to a=a^=a|a|

Calculation:

Let a = -2î + 3ĵ

|a|=(2)2+32=13

∴ Unit vector parallel to a=a^=a|a|

113(2i^+3j^)

2i^13+3j^13

Parallel Vectors Question 15:

If position vectors of four points A, B and C and D are î + ĵ + k̂, 2î + 3ĵ , 3î + 5ĵ - 2k̂ and k̂ - ĵ respectively, then AB and CD are related as 

  1. perpendicular
  2. parallel
  3. independent
  4. None of these

Answer (Detailed Solution Below)

Option 2 : parallel

Parallel Vectors Question 15 Detailed Solution

Given:

A =   î + ĵ + k̂,

B  = 2î + 3ĵ,

C  = 3î + 5ĵ - 2k̂ and,

D =  k̂ - ĵ

Concept:

If two vectors a and b are collinear then vectors can be written as a linear expression of other vectors:

 a=λb, where λ = some constant

Calculation:

Consider a vector O  with position vector 0î + 0ĵ + 0k̂.

AB = OB - OA

AB = 2î + 3ĵ î - ĵ - k̂

AB = î + 2ĵ - k̂       -----(1)

Similarly, 

CD = OD - OC

CD = k̂ - ĵ - 3î - 5ĵ + 2k̂

CD = - 3î - 6ĵ + 3k̂ 

CD = -3(î + 2ĵ - k̂)       -----(2)

From equatiion (1) & (2), we can see

CD = -3(AB)

So, they are collinear vector

∴ AB and CD are parallel.

Get Free Access Now
Hot Links: teen patti download apk teen patti king real cash teen patti