Inverse Laplace Transform MCQ Quiz - Objective Question with Answer for Inverse Laplace Transform - Download Free PDF

Last updated on Apr 14, 2025

Latest Inverse Laplace Transform MCQ Objective Questions

Inverse Laplace Transform Question 1:

If f(t) = eat, its Laplace Transform (for s > a) is given by

  1. as2+(sa)
  2. π2(sa)
  3. 1(sa)
  4. Does not exist

Answer (Detailed Solution Below)

Option 3 : 1(sa)

Inverse Laplace Transform Question 1 Detailed Solution

Explanation:

Given,   f(t)=eat

L[f(t)]=L[eat]=0estf(t)dt

L[eat]=0esteatdt=0e(sa)tdt

L[eat]=(e(sa)t(sa))0=1sa(01)=1sa

∴ Laplace transform of L[eat] is 1sa

 

Inverse Laplace Transform Question 2:

Consider a series RL circuit shown below

F1 Savita Engineering 05-5-23-D15

u(t) and u(t - t0) are unit step functions. The current flowing through the resistance R at time t > 0 is given by

  1. i(t)=VReRt0L(eRt/L1)
  2. i(t)=VReRtL(eRt0/L1)
  3. i(t)=VReRtL(eRt0/L1)
  4. i(t)=VReRt0L(eRt/L1)

Answer (Detailed Solution Below)

Option 1 : i(t)=VReRt0L(eRt/L1)

Inverse Laplace Transform Question 2 Detailed Solution

The correct answer is _____.

Detailed Solution:

Apply Laplace Transform of the circuit:

F1 Savita Engineering 5-5-23-D16

Apply KVL in the loop:

V0s+LsI(s)+RI(s)+V0et0ss=0

I(s)=V0(1et0s)s(Ls+R)

Apply Inverse Laplace Transform:

i(t) = V0R(1eRLt)u(t)V0R(1eRL(tt0))u(tt0))A

Inverse Laplace Transform Question 3:

Which one of the options given is the inverse Laplace transform of 1s3s? 𝑢(𝑡) denotes the unit-step function.

  1. (1+12et+12et)u(t)
  2. (13etet)u(t)
  3. (1+12e(t1)+12e(t1))u(t1)
  4. (112e(t1)12e(t1))u(t1)

Answer (Detailed Solution Below)

Option 1 : (1+12et+12et)u(t)

Inverse Laplace Transform Question 3 Detailed Solution

Concept:

If L-1{F(s)} = f(t)

then

L-1F(s – a) = eat.f(t) and L-1{F(s + a)} = e-at.f(t)

Calculation:

Given, 

F(s)=1s3s=1s(s21)=1s(s1)(s+1)

On partial fraction decomposition,

F(s)=1s+12s1+12s+1

Thus, L1(F(s))=L1(1s)+L1(12s1)+L1(12s+1)

L1(1s)+12L1(1s1)+12L1(1s+1)

1+12et+12et

Inverse Laplace Transform Question 4:

Find the inverse Laplace transform of 6s4s24s+20, where the parameter s is real.

  1. 4e−4t − e−t sin2t
  2. 6e2t cos 4t + 2e2t sin 4t
  3. 5e3t − 2e−2t
  4. 3e−4t + 3 cos 3t

Answer (Detailed Solution Below)

Option 2 : 6e2t cos 4t + 2e2t sin 4t

Inverse Laplace Transform Question 4 Detailed Solution

Concept Used:-

Laplace transform is the particular integral formulas and very useful to solve the equations of linear differential in some certain conditions.

Some useful formulas of Laplace transform which we will use in the given problem are, 

L1{sa(sa)2+b2}=eatcos(bt)L1{1(sa)2+b2}=eatsin(bt)

Explanation:-

Given function is, 

6s4s24s+20

Here, the parameter s is real. Its Laplace transform will be L1{6s4s24s+20}.

Rewrite the expression to use the direct result of Laplace transform as,

L1{6s4s24s+20}=L1{6s12+8s24s+4+16}L1{6s4s24s+20}=L1{6(s2)+8(s2)2+16}L1{6s4s24s+20}=L1{6(s2)(s2)2+16+8(s2)2+16}L1{6s4s24s+20}=6L1{(s2)(s2)2+16}+2L1{4(s2)2+16}L1{6s4s24s+20}=6L1{(s2)(s2)2+42}+2L1{4(s2)2+42}Now, using the above Laplace transform values, we get,

L1{6s4s24s+20}= 6e2t cos 4t + 2e2t sin 4t

So, the inverse Laplace transform of the given function is 6e2t cos 4t + 2e2t sin 4t.

Hence, the correct option is 2.

Inverse Laplace Transform Question 5:

If L{f(t)}=F(s)=3(s+3)s2+6s+8, and f(0.5) is given by K(e+1e2), then find the value of K

Answer (Detailed Solution Below) 1.5

Inverse Laplace Transform Question 5 Detailed Solution

Explanation:

F(s)=3(s+3)s2+6s+8

By applying partial fraction method:

F(s)=3(s+3)(s+2)(s+4)=A(s+2)+B(s+4)

35 + 9 = A (s + 4) + B (s + 2)

Comparing both the sides:

A + B = 3 and 4A + 2B = 9

A = B = 1.5

F(s)=1.5(s+2)+1.5(s+4)

By applying inverse Laplace transform, we get:

f(t) = 1.5e-2t + 1.5e-4t

At t = 0.5

f(0.5)=1.5(1e+1e2)=1.5(1+ee2)

∴ the value of K is 1.5

Top Inverse Laplace Transform MCQ Objective Questions

The inverse Laplace transform of 1(s+1)(s2) is

  1. e2t+et3
  2. e2t+et3
  3. e2tet3
  4. e2tet

Answer (Detailed Solution Below)

Option 3 : e2tet3

Inverse Laplace Transform Question 6 Detailed Solution

Download Solution PDF

Concept:

The Laplace transform of a general exponential signal is given by:

L[eat]1s+a

where 'a' is any positive integer.

Calculation:

Given:

1(s+1)(s2)

1(s+1)(s2)=A(s2)+B(s+1)=13{1s2+1s+1}

L1(1(s+1)(s2))=L1{13(1s21s+1)}=e2tet3

Additional Information

Some common inverse Laplace transforms are:

F(s)

ROC

f(t)

1

All s

δ (t)

1s

Re (s) > 0

u(t)

1s2

Re (s) > 0

t

n!sn+1

Re (s) > 0

tn

1s+a

Re (s) > -a

e-at

1(s+a)2

Re (s) > -a

t e-at

n!(s+a)n

Re (s) > -a

tn e-at

as2+a2

Re (s) > 0

sin at

ss2+a2

Re (s) > 0

cos at

If L-1 [f(s)] = f(t), then L-1 [f(s – a)] is

  1. eat L-1 [f(s)]

  2. e-at L-1 [f(s)]

  3. L-1 [f(s)]

  4. L-1 [f’(s)]

Answer (Detailed Solution Below)

Option 1 :

eat L-1 [f(s)]

Inverse Laplace Transform Question 7 Detailed Solution

Download Solution PDF

Concept:

If L-1{F(s)} = f(t)

then

L-1F(s – a) = eat.f(t) =  eatL-1{F(s)}

Additional Information

L-1{F(s + a)} = e-at.f(t)

The Laplace transform L(eat) is, [Note: L(f(t)) = f̅ (s)]

  1. 1s
  2. as+a
  3. 1sa
  4. sa

Answer (Detailed Solution Below)

Option 3 : 1sa

Inverse Laplace Transform Question 8 Detailed Solution

Download Solution PDF

From the basic definition of Laplace transform:

F(s)=0f(t)estdt

f(t) = eat

F(s)=0e(sa)tdt

F(s)=1sa

Find the inverse Laplace transform of 6s4s24s+20, where the parameter s is real.

  1. 4e−4t − e−t sin2t
  2. 6e2t cos 4t + 2e2t sin 4t
  3. 5e3t − 2e−2t
  4. 3e−4t + 3 cos 3t

Answer (Detailed Solution Below)

Option 2 : 6e2t cos 4t + 2e2t sin 4t

Inverse Laplace Transform Question 9 Detailed Solution

Download Solution PDF

Concept Used:-

Laplace transform is the particular integral formulas and very useful to solve the equations of linear differential in some certain conditions.

Some useful formulas of Laplace transform which we will use in the given problem are, 

L1{sa(sa)2+b2}=eatcos(bt)L1{1(sa)2+b2}=eatsin(bt)

Explanation:-

Given function is, 

6s4s24s+20

Here, the parameter s is real. Its Laplace transform will be L1{6s4s24s+20}.

Rewrite the expression to use the direct result of Laplace transform as,

L1{6s4s24s+20}=L1{6s12+8s24s+4+16}L1{6s4s24s+20}=L1{6(s2)+8(s2)2+16}L1{6s4s24s+20}=L1{6(s2)(s2)2+16+8(s2)2+16}L1{6s4s24s+20}=6L1{(s2)(s2)2+16}+2L1{4(s2)2+16}L1{6s4s24s+20}=6L1{(s2)(s2)2+42}+2L1{4(s2)2+42}Now, using the above Laplace transform values, we get,

L1{6s4s24s+20}= 6e2t cos 4t + 2e2t sin 4t

So, the inverse Laplace transform of the given function is 6e2t cos 4t + 2e2t sin 4t.

Hence, the correct option is 2.

If f(t) = eat, its Laplace Transform (for s > a) is given by

  1. as2+(sa)
  2. π2(sa)
  3. 1(sa)
  4. Does not exist

Answer (Detailed Solution Below)

Option 3 : 1(sa)

Inverse Laplace Transform Question 10 Detailed Solution

Download Solution PDF

Explanation:

Given,   f(t)=eat

L[f(t)]=L[eat]=0estf(t)dt

L[eat]=0esteatdt=0e(sa)tdt

L[eat]=(e(sa)t(sa))0=1sa(01)=1sa

∴ Laplace transform of L[eat] is 1sa

 

The Inverse Laplace transform of (ss2+α2) is:

  1. cos αt
  2. sin αt
  3. cosh αt
  4. sinh αt

Answer (Detailed Solution Below)

Option 1 : cos αt

Inverse Laplace Transform Question 11 Detailed Solution

Download Solution PDF

Concept:

The Laplace transform of a general exponential signal is given by:

L[cosat]ss2+a2

Laplace Inverse of L1[ss2+α2]=cosαt

where 'a' is any positive integer.

Inverse Laplace Transform Question 12:

If L{f(t)}=F(s)=3(s+3)s2+6s+8, and f(0.5) is given by K(e+1e2), then find the value of K

Answer (Detailed Solution Below) 1.5

Inverse Laplace Transform Question 12 Detailed Solution

Explanation:

F(s)=3(s+3)s2+6s+8

By applying partial fraction method:

F(s)=3(s+3)(s+2)(s+4)=A(s+2)+B(s+4)

35 + 9 = A (s + 4) + B (s + 2)

Comparing both the sides:

A + B = 3 and 4A + 2B = 9

A = B = 1.5

F(s)=1.5(s+2)+1.5(s+4)

By applying inverse Laplace transform, we get:

f(t) = 1.5e-2t + 1.5e-4t

At t = 0.5

f(0.5)=1.5(1e+1e2)=1.5(1+ee2)

∴ the value of K is 1.5

Inverse Laplace Transform Question 13:

The inverse Laplace transform of 1(s+1)(s2) is

  1. e2t+et3
  2. e2t+et3
  3. e2tet3
  4. e2tet

Answer (Detailed Solution Below)

Option 3 : e2tet3

Inverse Laplace Transform Question 13 Detailed Solution

Concept:

The Laplace transform of a general exponential signal is given by:

L[eat]1s+a

where 'a' is any positive integer.

Calculation:

Given:

1(s+1)(s2)

1(s+1)(s2)=A(s2)+B(s+1)=13{1s2+1s+1}

L1(1(s+1)(s2))=L1{13(1s21s+1)}=e2tet3

Additional Information

Some common inverse Laplace transforms are:

F(s)

ROC

f(t)

1

All s

δ (t)

1s

Re (s) > 0

u(t)

1s2

Re (s) > 0

t

n!sn+1

Re (s) > 0

tn

1s+a

Re (s) > -a

e-at

1(s+a)2

Re (s) > -a

t e-at

n!(s+a)n

Re (s) > -a

tn e-at

as2+a2

Re (s) > 0

sin at

ss2+a2

Re (s) > 0

cos at

Inverse Laplace Transform Question 14:

If L-1 [f(s)] = f(t), then L-1 [f(s – a)] is

  1. eat L-1 [f(s)]

  2. e-at L-1 [f(s)]

  3. L-1 [f(s)]

  4. L-1 [f’(s)]

Answer (Detailed Solution Below)

Option 1 :

eat L-1 [f(s)]

Inverse Laplace Transform Question 14 Detailed Solution

Concept:

If L-1{F(s)} = f(t)

then

L-1F(s – a) = eat.f(t) =  eatL-1{F(s)}

Additional Information

L-1{F(s + a)} = e-at.f(t)

Inverse Laplace Transform Question 15:

The inverse Laplace transform of 2s24(s3)(s2s2) is

  1. (1+t)et+72e3t
  2. et3+tet+2t
  3. 72e3tet643e2t
  4. 72e3tet643e2t

Answer (Detailed Solution Below)

Option 3 : 72e3tet643e2t

Inverse Laplace Transform Question 15 Detailed Solution

Concept:

The Laplace transform of a general exponential signal is given by:

L[eat]1s+a

where 'a' is any positive integer.

Calculation:

Given:

F(s)=2s24(s3)(s2s2)

=2s24(s3)(s+1)(s2)

=72(s3)16(s+1)43(s2)

Apply Inverse Laplace transform on both sides,

L1[F(s)]=f(t)=72e3tet643e2t
Get Free Access Now
Hot Links: teen patti download teen patti master gold apk real cash teen patti