Cube Roots of Unity MCQ Quiz - Objective Question with Answer for Cube Roots of Unity - Download Free PDF

Last updated on Mar 30, 2025

Latest Cube Roots of Unity MCQ Objective Questions

Cube Roots of Unity Question 1:

What is the value of (i+3i+3)200+(i3i+3)200+1?

  1. -1
  2. 0
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 1 Detailed Solution

Concept :

Cube Roots of unity are 1, ω and ω2

Here, ω = 1+i32 and ω2 = 1i32

Property of cube roots of unity:

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

 

Calculations :

Given that

 (i+3i+3)200+(i3i+3)200

Consider the first part of the given equation

⇒ (i+3i+3)×(i+3i+3)

⇒ (i+3)2(3i)(3+i)

We know that (a  - b)(a + b) = a2 - band i2 = √-1

⇒ 2+23i4    

⇒ 1+32=(132)=ω2       ----- (1)

Consider the second part of the given equation

⇒ (i3i+3)×(i3i3)

⇒ (i3)2(i2(3)2)=1+i32=ω         ----- (2)

Using equations (1) and (2) in the given equation, we get

⇒ (ω2)200+ω200+1

⇒ ω400+ω200+1

⇒ ω3×133+1+ω3×66+2+1

We know that ω3=1

⇒ ω2+ω+1=0

The value of (i+31+3)200+(i31+3)200+1 is 0.

Cube Roots of Unity Question 2:

If 1, ω, ω2 are cube roots of unity then the value of Δ = [1ωω2nω2ω2n1ω2n1ωn]

  1. 1
  2. 0
  3. ω 
  4. ω2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 2 Detailed Solution

Concept:

The cube roots of unity are 1, ω and ω2 

where,

 ω=1+i32andω2=1i32

1+ωn+ω2n={0,ifnisnotmultipleof33,ifnismultipleof3

ω3 = 1

1 + ω + ω2 = 0

ω3n = 1

​Calculation:

Given:

Δ = [1ωω2nω2ω2n1ω2n1ωn]

on solving determinant we get,

Δ = 1 (ω2n ωn - 1) - ω (ω2 ωn - ω2n) + ω2n (ω2 - ω2n ω2n)

Δ = (ω3n - 1) - (ω3 ωn - ω2n ω) + (ω2 ω2n - ω6n )

Since ω3 = 1, ω3n = 1, ω6n = 1

Δ = 0 - ωn + ω2n ω + ω2 ω2n - 1

Δ = -1 - ωn +ω2n (ω + ω2)

Since 1 + ω + ω2 = 0 ⇒ ω + ω2 = - 1

Δ = -1 - ωn - ω2n 

If n is not a multiple of 3 then:

Δ = -1 - ωn - ω2n  = 0

Cube Roots of Unity Question 3:

If a complex number ω satisfies the equation ω3 =1, then the value of 1+ω+1ω is

  1. 0
  2. 1
  3. 12
  4. 13

Answer (Detailed Solution Below)

Option 1 : 0

Cube Roots of Unity Question 3 Detailed Solution

Concept:

ω3 = 1 where ω is the cube root of unity.

ω3 - 13 = 0

(ω - 1)(1 + ω + ω2) = 0

∴ ω = 1 and 1 + ω + ω2 = 0

Calculation:

Given:

1+ω+1ω

We know that;

1 + ω + ω2 = 0

1+ω+ω21=0

1+ω+ω2ω3=0      [∵ ω3 = 1]

1+ω+1ω=0

Cube Roots of Unity Question 4:

If ω is a cube root of unity then the value of (1ω8)(1ω4)(1ω2)(1ω) is ___

  1. 1
  2. 9
  3. 0
  4. 6

Answer (Detailed Solution Below)

Option 2 : 9

Cube Roots of Unity Question 4 Detailed Solution

We know that 1+ω+ω2=0andω3=1 then

(1ω8)(1ω4)(1ω2)(1ω)=(1ω2)(1ω)(1ω2)(1ω)=(1ω2ω+ω3)(1ω2ω+ω3)=(2(ω+ω2))(2(ω+ω2))=(2(1))(2(1))=9

Top Cube Roots of Unity MCQ Objective Questions

If 1, ω, ω2 are cube roots of unity then the value of Δ = [1ωω2nω2ω2n1ω2n1ωn]

  1. 1
  2. 0
  3. ω 
  4. ω2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 5 Detailed Solution

Download Solution PDF

Concept:

The cube roots of unity are 1, ω and ω2 

where,

 ω=1+i32andω2=1i32

1+ωn+ω2n={0,ifnisnotmultipleof33,ifnismultipleof3

ω3 = 1

1 + ω + ω2 = 0

ω3n = 1

​Calculation:

Given:

Δ = [1ωω2nω2ω2n1ω2n1ωn]

on solving determinant we get,

Δ = 1 (ω2n ωn - 1) - ω (ω2 ωn - ω2n) + ω2n (ω2 - ω2n ω2n)

Δ = (ω3n - 1) - (ω3 ωn - ω2n ω) + (ω2 ω2n - ω6n )

Since ω3 = 1, ω3n = 1, ω6n = 1

Δ = 0 - ωn + ω2n ω + ω2 ω2n - 1

Δ = -1 - ωn +ω2n (ω + ω2)

Since 1 + ω + ω2 = 0 ⇒ ω + ω2 = - 1

Δ = -1 - ωn - ω2n 

If n is not a multiple of 3 then:

Δ = -1 - ωn - ω2n  = 0

Cube Roots of Unity Question 6:

If ω is a cube root of unity then the value of (1ω8)(1ω4)(1ω2)(1ω) is ___

  1. 1
  2. 9
  3. 0
  4. 6

Answer (Detailed Solution Below)

Option 2 : 9

Cube Roots of Unity Question 6 Detailed Solution

We know that 1+ω+ω2=0andω3=1 then

(1ω8)(1ω4)(1ω2)(1ω)=(1ω2)(1ω)(1ω2)(1ω)=(1ω2ω+ω3)(1ω2ω+ω3)=(2(ω+ω2))(2(ω+ω2))=(2(1))(2(1))=9

Cube Roots of Unity Question 7:

If 1, ω, ω2 are cube roots of unity then the value of Δ = [1ωω2nω2ω2n1ω2n1ωn]

  1. 1
  2. 0
  3. ω 
  4. ω2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 7 Detailed Solution

Concept:

The cube roots of unity are 1, ω and ω2 

where,

 ω=1+i32andω2=1i32

1+ωn+ω2n={0,ifnisnotmultipleof33,ifnismultipleof3

ω3 = 1

1 + ω + ω2 = 0

ω3n = 1

​Calculation:

Given:

Δ = [1ωω2nω2ω2n1ω2n1ωn]

on solving determinant we get,

Δ = 1 (ω2n ωn - 1) - ω (ω2 ωn - ω2n) + ω2n (ω2 - ω2n ω2n)

Δ = (ω3n - 1) - (ω3 ωn - ω2n ω) + (ω2 ω2n - ω6n )

Since ω3 = 1, ω3n = 1, ω6n = 1

Δ = 0 - ωn + ω2n ω + ω2 ω2n - 1

Δ = -1 - ωn +ω2n (ω + ω2)

Since 1 + ω + ω2 = 0 ⇒ ω + ω2 = - 1

Δ = -1 - ωn - ω2n 

If n is not a multiple of 3 then:

Δ = -1 - ωn - ω2n  = 0

Cube Roots of Unity Question 8:

If a complex number ω satisfies the equation ω3 =1, then the value of 1+ω+1ω is

  1. 0
  2. 1
  3. 12
  4. 13

Answer (Detailed Solution Below)

Option 1 : 0

Cube Roots of Unity Question 8 Detailed Solution

Concept:

ω3 = 1 where ω is the cube root of unity.

ω3 - 13 = 0

(ω - 1)(1 + ω + ω2) = 0

∴ ω = 1 and 1 + ω + ω2 = 0

Calculation:

Given:

1+ω+1ω

We know that;

1 + ω + ω2 = 0

1+ω+ω21=0

1+ω+ω2ω3=0      [∵ ω3 = 1]

1+ω+1ω=0

Cube Roots of Unity Question 9:

What is the value of (i+3i+3)200+(i3i+3)200+1?

  1. -1
  2. 0
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 9 Detailed Solution

Concept :

Cube Roots of unity are 1, ω and ω2

Here, ω = 1+i32 and ω2 = 1i32

Property of cube roots of unity:

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

 

Calculations :

Given that

 (i+3i+3)200+(i3i+3)200

Consider the first part of the given equation

⇒ (i+3i+3)×(i+3i+3)

⇒ (i+3)2(3i)(3+i)

We know that (a  - b)(a + b) = a2 - band i2 = √-1

⇒ 2+23i4    

⇒ 1+32=(132)=ω2       ----- (1)

Consider the second part of the given equation

⇒ (i3i+3)×(i3i3)

⇒ (i3)2(i2(3)2)=1+i32=ω         ----- (2)

Using equations (1) and (2) in the given equation, we get

⇒ (ω2)200+ω200+1

⇒ ω400+ω200+1

⇒ ω3×133+1+ω3×66+2+1

We know that ω3=1

⇒ ω2+ω+1=0

The value of (i+31+3)200+(i31+3)200+1 is 0.

Cube Roots of Unity Question 10:

a + bω + cω2c + aω + bω2 + a + bω + cω2b + cω + aω2 is equal to

  1. 1
  2. 0
  3. 2
  4. -1

Answer (Detailed Solution Below)

Option 4 : -1

Cube Roots of Unity Question 10 Detailed Solution

Concept:

1 + ω + ω2 = 0

ω3 = 1

Calculation: 

We can write the given expression as

⇒ ω(a + bω + cω2)(cω + aω2 + b)+a + bω + cω2b + cω + aω2

⇒ (a + bω + cω2)(ω+1)(cω + aω2 + b)

⇒ (a + bω + cω2)(ω2)(cω + aω2 + b)

⇒ (aω2 + b + cω)(cω + aω2 + b)

⇒ -1

∴ The required value is -1.

Cube Roots of Unity Question 11:

If f(x) and g(x) are two polynomials such that the polynomial P(x) = f(x3) + x g(x3) is divisible by x2 + x + 1, then P(1) is equal to ________.

Answer (Detailed Solution Below) 0

Cube Roots of Unity Question 11 Detailed Solution

Explanation:

Given:

P(x) = ƒ(x3) + xg(x3)...(1)

Roots of x2 + x + 1 are ω and ω2 as ω2 + ω + 1 = 0 

where ω is the cube root of unity

Now P(x) is divisible by x2 + x + 1 ⇒ P(x) = Q(x)(x2 + x + 1)

So P(ω) = P(ω2) = 0 --(2) ---- (Since roots of x2 + x + 1 are ω and ω2)

Now put x = ω and ω2 in equation (1)

P (ω) = f (1) + ω g (1) = 0 …(3) ------(Since ω3 = 1)

P (ω2) = f (1) + ω2 g (1) = 0 …(4)

Subtracting (3) and (4)

ω g (1) - ω2 g (1) = P (ω) - P (ω2)

from (2)

(ω - ω2) g (1) = 0

As ω - ω2 ≠ 0 so  g (1) = 0 -----(5)

Adding (3) and (4)

2 f (1) – g (1) = P(ω) + P(ω2) -----(Since ω2 + ω = -1)

From (2)

g (1) = 2 f (1)

From (5) we get

f (1) = g (1) = 0

Therefore , P (1) = f (1) + g (1)

= 0 + 0

= 0

Cube Roots of Unity Question 12:

(cos2θ+isin2θ)3(cos3θisin3θ)2(sinθicosθ)3 is equal to

  1. cos3θ+isin3θ
  2. i(cos3θisin3θ)
  3. i(cos15θisin15θ)
  4. cos15θisin15θ

Answer (Detailed Solution Below)

Option 2 : i(cos3θisin3θ)

Cube Roots of Unity Question 12 Detailed Solution

(cos2θ+isin2θ)3(cos3θisin3θ)2(sinθicosθ)3

=(ei2θ)3.(ei3θ)2.(ieiθ)3

=ei6θ.ei6θ(i)ei3θ=(i)ei3θ

=i(cos3θisin3θ)

Cube Roots of Unity Question 13:

The complex number z = x + iy, which satisfy the equation, |z5iz+5i|=1 lies on

  1. X – axis

  2. Straight line y = 5

  3. Circle with center at origin

  4. Ellipse with center at origin

Answer (Detailed Solution Below)

Option 1 :

X – axis

Cube Roots of Unity Question 13 Detailed Solution

|z5iz+5i|=1|x+iy5i|2=|x+iy+5i|2

⇒ y = 0            ⇒ x – axis

Cube Roots of Unity Question 14:

Value of complex function {|cos(2n+1)π+isinnπ|}i, where i=1, will be.     (n is an integer value)

  1. equal in real and imaginary parts

  2. purely imaginary

  3. real and non-negative

  4. real & imaginary

Answer (Detailed Solution Below)

Option 3 :

real and non-negative

Cube Roots of Unity Question 14 Detailed Solution

f = |cos (2n + 1)π + isin nπ|i

for any n (integer value           cos(2n + 1)π = ±1) and sin nπ = 0

so        f = |±1 + 0|I = 1i

=1(0+i)=1(cosπ2+isinπ2)=eeiπ2

or we can say for multi values f=eei(4n+1)π2 for any values of n, function will always be real & non-negative.

Get Free Access Now
Hot Links: teen patti master game teen patti party teen patti real cash apk