Two Body Collisions MCQ Quiz in हिन्दी - Objective Question with Answer for Two Body Collisions - मुफ्त [PDF] डाउनलोड करें
Last updated on May 11, 2025
Latest Two Body Collisions MCQ Objective Questions
Two Body Collisions Question 1:
द्रव्यमान m के दो सर्वसम कण (p1 और p2) एक पूर्णतः प्रत्यास्थ संघट्ट में शामिल हैं। कुल ऊर्जा E है। कण p1 प्रारंभ में v चाल से गतिमान है जबकि p2 स्थिर है। संघट्ट के बाद, p1 θ = 60° से विक्षेपित होता है। स्तंभ -1 के कथनों का स्तंभ -2 में उनके सही विवरणों से मिलान कीजिए।
निम्नलिखित का मिलान कीजिए:
स्तंभ-1 | स्तंभ-2 |
---|---|
1) संघट्ट के बाद p2 की चाल (v में) | a) 1 / 2 |
2) p2 की गतिज ऊर्जा (E में) | b) 1/3 |
3) p1 और p2 की गति की दिशाएँ | c) संघट्ट के बाद एक दूसरे के लंबवत |
4) दोनों कणों की कुल गतिज ऊर्जा |
d) अपरिवर्तित रहती है |
e) संघट्ट के बाद एक दूसरे के समांतर |
Answer (Detailed Solution Below)
Two Body Collisions Question 1 Detailed Solution
व्याख्या:
1. पूर्णतः प्रत्यास्थ संघट्ट:
एक पूर्णतः प्रत्यास्थ संघट्ट में, गतिज ऊर्जा और संवेग दोनों संरक्षित रहते हैं।
चूँकि दोनों कण सर्वसम हैं और संघट्ट प्रत्यास्थ है, इसलिए संवेग और ऊर्जा के संरक्षण से अंतिम वेग और दिशाएँ निर्धारित करने में मदद मिलेगी।
2. संवेग का संरक्षण:
मान लीजिए कि प्रत्येक कण का द्रव्यमान m है।
प्रारंभ में, कण p1 v चाल से गतिमान है, जबकि p2 विरामावस्था में है।
संघट्ट के बाद, कण p1 अपनी मूल दिशा से \(60^\circ\) के एक निश्चित कोण पर गति करता है, और कण p2 भी किसी वेग से गति करेगा।
3. संघट्ट के बाद वेग संबंध:
संघट्ट के बाद, p1 का वेग दिशा बदलता है, और इसके संवेग का एक भाग p2 में स्थानांतरित हो जाता है।
पूर्णतः प्रत्यास्थ संघट्ट में दो सर्वसम कणों के लिए, यदि एक प्रारंभ में स्थिर है, तो वे संघट्ट के बाद एक दूसरे के \(90^\circ \) के कोण पर गति करते हैं।
इसका अर्थ है कि संघट्ट के बाद p1 और p2 की गति की दिशाएँ एक दूसरे के लंबवत हैं।
4. कण p2 की चाल:
गतिज ऊर्जा और संवेग के संरक्षण का उपयोग करके, हम दोनों कणों के वेग निर्धारित कर सकते हैं।
सर्वसम द्रव्यमानों के लिए, संघट्ट के बाद कणों के वेग इस प्रकार संतुष्ट कर सकते हैं:
संघट्ट के बाद \(p_1\) की चाल \(v_1' = \frac{v}{2}\) है।
संघट्ट के बाद \(p_2\) की चाल भी \(v_2' = \frac{v\sqrt{3}}{2}\) है।
इस प्रकार, संघट्ट के बाद \(p_2\) की चाल \(\frac{v}{2}\) नहीं है। कथन गलत है।
5. \(p_2\) की गतिज ऊर्जा:
संघट्ट के बाद \(p_2\) की गतिज ऊर्जा संबंध का उपयोग करके पाई जा सकती है:
\( K_{p_2} = \frac{1}{2} m v_2'^2 = \frac{1}{2} m \left( \frac{v\sqrt{3}}{2} \right)^2 = \frac{3}{8} m v^2 \)
निकाय की कुल प्रारंभिक गतिज ऊर्जा थी:
\( K_{\text{total}} = \frac{1}{2} m v^2\)
संघट्ट के बाद \(p_2 \) के पास कुल ऊर्जा का अंश है:
\( \frac{K_{p_2}}{K_{\text{total}}} = \frac{\frac{3}{8} m v^2}{\frac{1}{2} m v^2} = \frac{3}{4}\)
इसलिए, \(p_2\) की गतिज ऊर्जा कुल ऊर्जा का \( \frac{1}{3} \) नहीं है। यह कथन गलत है।
6. गति की लंबवत दिशाएँ:
जैसा कि पहले बताया गया है, संघट्ट के बाद, दो कण ऐसी दिशाओं में गति करते हैं जो एक दूसरे के लंबवत होती हैं।
यह कथन सही है।
7. कुल गतिज ऊर्जा:
चूँकि संघट्ट पूर्णतः प्रत्यास्थ है, इसलिए निकाय की कुल गतिज ऊर्जा अपरिवर्तित रहती है।
यह कथन सही है।
∴ सही उत्तर: विकल्प 3 (1 - a, 2 - b, 3 - c, 4 - d) है।
Top Two Body Collisions MCQ Objective Questions
Two Body Collisions Question 2:
द्रव्यमान m के दो सर्वसम कण (p1 और p2) एक पूर्णतः प्रत्यास्थ संघट्ट में शामिल हैं। कुल ऊर्जा E है। कण p1 प्रारंभ में v चाल से गतिमान है जबकि p2 स्थिर है। संघट्ट के बाद, p1 θ = 60° से विक्षेपित होता है। स्तंभ -1 के कथनों का स्तंभ -2 में उनके सही विवरणों से मिलान कीजिए।
निम्नलिखित का मिलान कीजिए:
स्तंभ-1 | स्तंभ-2 |
---|---|
1) संघट्ट के बाद p2 की चाल (v में) | a) 1 / 2 |
2) p2 की गतिज ऊर्जा (E में) | b) 1/3 |
3) p1 और p2 की गति की दिशाएँ | c) संघट्ट के बाद एक दूसरे के लंबवत |
4) दोनों कणों की कुल गतिज ऊर्जा |
d) अपरिवर्तित रहती है |
e) संघट्ट के बाद एक दूसरे के समांतर |
Answer (Detailed Solution Below)
Two Body Collisions Question 2 Detailed Solution
व्याख्या:
1. पूर्णतः प्रत्यास्थ संघट्ट:
एक पूर्णतः प्रत्यास्थ संघट्ट में, गतिज ऊर्जा और संवेग दोनों संरक्षित रहते हैं।
चूँकि दोनों कण सर्वसम हैं और संघट्ट प्रत्यास्थ है, इसलिए संवेग और ऊर्जा के संरक्षण से अंतिम वेग और दिशाएँ निर्धारित करने में मदद मिलेगी।
2. संवेग का संरक्षण:
मान लीजिए कि प्रत्येक कण का द्रव्यमान m है।
प्रारंभ में, कण p1 v चाल से गतिमान है, जबकि p2 विरामावस्था में है।
संघट्ट के बाद, कण p1 अपनी मूल दिशा से \(60^\circ\) के एक निश्चित कोण पर गति करता है, और कण p2 भी किसी वेग से गति करेगा।
3. संघट्ट के बाद वेग संबंध:
संघट्ट के बाद, p1 का वेग दिशा बदलता है, और इसके संवेग का एक भाग p2 में स्थानांतरित हो जाता है।
पूर्णतः प्रत्यास्थ संघट्ट में दो सर्वसम कणों के लिए, यदि एक प्रारंभ में स्थिर है, तो वे संघट्ट के बाद एक दूसरे के \(90^\circ \) के कोण पर गति करते हैं।
इसका अर्थ है कि संघट्ट के बाद p1 और p2 की गति की दिशाएँ एक दूसरे के लंबवत हैं।
4. कण p2 की चाल:
गतिज ऊर्जा और संवेग के संरक्षण का उपयोग करके, हम दोनों कणों के वेग निर्धारित कर सकते हैं।
सर्वसम द्रव्यमानों के लिए, संघट्ट के बाद कणों के वेग इस प्रकार संतुष्ट कर सकते हैं:
संघट्ट के बाद \(p_1\) की चाल \(v_1' = \frac{v}{2}\) है।
संघट्ट के बाद \(p_2\) की चाल भी \(v_2' = \frac{v\sqrt{3}}{2}\) है।
इस प्रकार, संघट्ट के बाद \(p_2\) की चाल \(\frac{v}{2}\) नहीं है। कथन गलत है।
5. \(p_2\) की गतिज ऊर्जा:
संघट्ट के बाद \(p_2\) की गतिज ऊर्जा संबंध का उपयोग करके पाई जा सकती है:
\( K_{p_2} = \frac{1}{2} m v_2'^2 = \frac{1}{2} m \left( \frac{v\sqrt{3}}{2} \right)^2 = \frac{3}{8} m v^2 \)
निकाय की कुल प्रारंभिक गतिज ऊर्जा थी:
\( K_{\text{total}} = \frac{1}{2} m v^2\)
संघट्ट के बाद \(p_2 \) के पास कुल ऊर्जा का अंश है:
\( \frac{K_{p_2}}{K_{\text{total}}} = \frac{\frac{3}{8} m v^2}{\frac{1}{2} m v^2} = \frac{3}{4}\)
इसलिए, \(p_2\) की गतिज ऊर्जा कुल ऊर्जा का \( \frac{1}{3} \) नहीं है। यह कथन गलत है।
6. गति की लंबवत दिशाएँ:
जैसा कि पहले बताया गया है, संघट्ट के बाद, दो कण ऐसी दिशाओं में गति करते हैं जो एक दूसरे के लंबवत होती हैं।
यह कथन सही है।
7. कुल गतिज ऊर्जा:
चूँकि संघट्ट पूर्णतः प्रत्यास्थ है, इसलिए निकाय की कुल गतिज ऊर्जा अपरिवर्तित रहती है।
यह कथन सही है।
∴ सही उत्तर: विकल्प 3 (1 - a, 2 - b, 3 - c, 4 - d) है।