System of ODE MCQ Quiz in বাংলা - Objective Question with Answer for System of ODE - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 26, 2025

পাওয়া System of ODE उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন System of ODE MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest System of ODE MCQ Objective Questions

Top System of ODE MCQ Objective Questions

System of ODE Question 1:

Suppose x(t) is the solution of the following initial value problem in ℝ2

ẋ = Ax, x(0) = x0, where A = \(\left[\begin{array}{ll}2 & 2 \\1 & 3\end{array}\right]\).

Which of the following statements is true?

  1. e−4t|x(t)| → 0 as t → ∞, for all x0 ≠ 0.
  2. e−t|x(t)| → 0 as t → -∞, for all x0 ≠ 0.
  3. e−5t|x(t)| → 0 as t → ∞, for all x0 ≠ 0.
  4. x(t) is a bounded solution for some x0 ≠ 0.

Answer (Detailed Solution Below)

Option 3 : e−5t|x(t)| → 0 as t → ∞, for all x0 ≠ 0.

System of ODE Question 1 Detailed Solution

Concept: 

Solution of ODE x'(t) = Ax is x(t) = c1ueλ1t + c2veλ2t, where u, v are the eigenvectors corresponding to the eigenvalues λ1 and λ2 respectively and c1 and c2 are constants.

Explanation:

A = \(\left[\begin{array}{ll}2 & 2 \\1 & 3\end{array}\right]\)

tr(A) = 5  and det(A) = 6 - 2 = 4

Eigenvalues are given by

λ2 - tr(A)λ + det(A) = 0

λ2 - 5λ + 4 = 0

(λ - 1)(λ - 4) = 0

λ = 1, 4

Eigenvector corresponding to eigenvalue λ = 1 is given by

\(\left[\begin{array}{ll}1 & 2 \\1 & 2\end{array}\right]\)\(\left[\begin{array}{ll}u_1 \\u_2\end{array}\right]\) = 0  

u1 + 2u2 = 0 ⇒ u1 = - 2u2 

Eigenvector is u = \(\begin{bmatrix}-2 \\1\end{bmatrix}\)

Eigenvector corresponding to eigenvalue λ = 4 is given by

\(\begin{bmatrix}-2 & 2 \\1 & -1\end{bmatrix}\)\(\left[\begin{array}{ll}v_1 \\v_2\end{array}\right]\) = 0  

v1 - v2 = 0 ⇒ v1 = v2 

Eigenvector is v = \(\left[\begin{array}{ll}1 \\1\end{array}\right]\)

Hence solution is

x(t) = c1\(\begin{bmatrix}-2 \\1\end{bmatrix}\)et + c2\(\left[\begin{array}{ll}1 \\1\end{array}\right]\)e4t

x(t) = \(\begin{bmatrix}-2c_1e^{t}+c_2e^{4t} \\c_1e^t+c_2e^{4t}\end{bmatrix}\)

et → ∞ as t → ∞ also e4t → ∞ as t → ∞

So x(t) is not bounded solution for any x0 ≠ 0

(4) is false

e−4t|x(t)| = \(\begin{bmatrix}-2c_1e^{-3t}+c_2 \\c_1e^{-3t}+c_2\end{bmatrix}\) → \(\begin{bmatrix}c_2 \\c_2\end{bmatrix}\) does not tends to 0 as t → ∞, for all x0 ≠ 0.

So (1) is false

e−t|x(t)| = \(\begin{bmatrix}-2c_1+c_2e^{3t} \\c_1+c_2e^{-3t}\end{bmatrix}\)→ \(\begin{bmatrix}-c_1 \\c_1\end{bmatrix}\) does not tends to 0 as t → -∞   

(2) is false

e−5t|x(t)| = \(\begin{bmatrix}-2c_1e^{-4t}+c_2e^{-t} \\c_1e^{-4t}+c_2e^{-t}\end{bmatrix}\) → 0 as t → ∞, for all x0 ≠ 0.

Option (3) is correct

System of ODE Question 2:

Let the system of ordinary differential equation Y' = BY, Y(0) = \(\left[\begin{array}{r} 2 \\ -1 \end{array}\right]\rm B=\left[\begin{array}{rr} 1 & 2 \\ 0 & -1 \end{array}\right]\) and Y = \(\left[\begin{array}{ll} y_1(x) \\ y_2(x) \end{array}\right]\). then

  1. у1(x), у2(x) → ∞ as x → -∞ 
  2. y1(x) → ∞ and y2(x) → - ∞ as x → - ∞
  3. y1(x) → 0 and y2(x) → 0 as x → -∞
  4.  y1(x) → ∞ and y2(x) → ∞ as x → 

Answer (Detailed Solution Below)

Option :

System of ODE Question 2 Detailed Solution

Explanation:

Y' = BY, Y(0) = \(\left[\begin{array}{r} 2 \\ -1 \end{array}\right]\rm B=\left[\begin{array}{rr} 1 & 2 \\ 0 & -1 \end{array}\right]\) and Y = \(\left[\begin{array}{ll} y_1(x) \\ y_2(x) \end{array}\right]\)

B is an upper triangular matrix so the eigenvalues of B are 1, -1

The eigenvector for 1 is given by

\(\left[\begin{array}{rr} 0 & 2 \\ 0 & -2 \end{array}\right]\begin{bmatrix}a_1\\a_2\end{bmatrix}\) = 0

⇒ a2 = 0

eigenvector for 1 is u = \(\left[\begin{array}{r} 1 \\ 0 \end{array}\right]\)

The eigenvector for -1 is given by

\(\left[\begin{array}{rr} 2 & 2 \\ 0 & 0 \end{array}\right]\begin{bmatrix}a_1\\a_2\end{bmatrix}\) = 0

⇒ 2a1 + 2a2 = 0 ⇒ a1 = - a2 

eigenvector for 1 is v = \(\left[\begin{array}{r} -1 \\ 1 \end{array}\right]\)

General solution is

\(\left[\begin{array}{ll} y_1(x) \\ y_2(x) \end{array}\right]\) = c1ex\(\left[\begin{array}{r} 1 \\ 0 \end{array}\right]\) + c2e-x\(\left[\begin{array}{r} -1 \\ 1 \end{array}\right]\)

\(\left[\begin{array}{ll} y_1(x) \\ y_2(x) \end{array}\right]\) = \(\left[\begin{array}{r} c_1e^x-c_2e^{-x} \\ c_2e^{-x} \end{array}\right]\)

using initial condition Y(0) = \(\left[\begin{array}{r} 2 \\ -1 \end{array}\right]\)

\(c_1-c_2=2, c_2=-1\) i.e., \(c_1=1, c_2=-1\)

Therefore

\(\left[\begin{array}{ll} y_1(x) \\ y_2(x) \end{array}\right]\) = \(\left[\begin{array}{r} e^x+e^{-x} \\ -e^{-x} \end{array}\right]\)

Hence y1(x) → ∞ and y2(x) → - ∞ as x → -∞

Option (2) is correct

System of ODE Question 3:

Consider a system of differential equation 

\(\frac{dx_1}{dt}=x_1+2x_2\\\frac{dx_2}{dt}=-x_2\)

such that \(x_1(0)=2, x_2(0)=-1\) then

  1. \(x_1(t)→∞, x_2(t)→0\) as t → ∞ 
  2. \(x_1(t)→\infty, x_2(t)\to\infty\) as t → ∞ 
  3. \(x_1(t)→0, x_2(t)→0\) as t → ∞ 
  4. \(x_1(t)→0, x_2(t)→∞\) at t → ∞ 

Answer (Detailed Solution Below)

Option 1 : \(x_1(t)→∞, x_2(t)→0\) as t → ∞ 

System of ODE Question 3 Detailed Solution

Concept:

The solution of the system of ODE of the form \(\frac{dX}{dt}=AX\) such that A is a square matrix is of the form

X = c1v1\(e^{λ_1t}\) +  c2v2\(e^{λ_2t}\) + .... +  cnvn\(e^{λ_nt}\) where λ1λ2, ..., λn are the distinct real eigenvalues of A and v1, v2, ..., vn are corresponding eigenvectors.

Explanation:

Given system of differential equations can be written as \(\frac{dX}{dt}=AX\) where A = \(\begin{bmatrix}1&2\\0&-1\end{bmatrix}\) and X = \(\begin{bmatrix}x_1\\x_2\end{bmatrix}\)

Here A is an upper triangular matrix so eigenvalues are 1, -1

Eigenvector corresponding to the eigenvalue 1 is given by

\(\begin{bmatrix}0&2\\0&-2\end{bmatrix}\begin{bmatrix}u\\v\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}\) ⇒ v = 0 so eigenvector = \(\begin{bmatrix}1\\0\end{bmatrix}\)

Eigenvector corresponding to the eigenvalue -1 is given by

\(\begin{bmatrix}2&2\\0&0\end{bmatrix}\begin{bmatrix}u\\v\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}\) ⇒ u + v = 0 so eigenvector = \(\begin{bmatrix}1\\-1\end{bmatrix}\)

So Solution is

\(\begin{bmatrix}x_1\\x_2\end{bmatrix}=c_1 e^t\begin{bmatrix}1\\0\end{bmatrix}+c_2 e^{-t}\begin{bmatrix}1\\-1\end{bmatrix}\)

\(\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}c_1 e^t+c_2 e^{-t}\\-c_2 e^{-t}\end{bmatrix}\)

\(x_1(0)=2, x_2(0)=-1\) ⇒ \(c_1+c_2=2, c_2=1\Rightarrow c_1=1\)

So solution is \(\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}e^t+e^{-t}\\-e^{-t}\end{bmatrix}\)

Option (1) is correct.

System of ODE Question 4:

Let f ∶ \(\mathbb{R}\)2 → \(\mathbb{R}\) be a locally Lipschitz function. Consider the system of ODEs given by \(\dot{x}\)1 = sin(ex2), \(\dot{x}\)2 = f(x1, x2) with initial condition (x1(0), x2(0)) = (1,1).

Which of the following statements is true?

  1. There is at most one local solution at time 0
  2. There always exists a global solution defined in [0, ∞)
  3. There might not be any solution around the time 0
  4. There is at least one solution around time 0

Answer (Detailed Solution Below)

Option :

System of ODE Question 4 Detailed Solution

Explanation:

 Since f is locally Lipschitz function so f is bounded \Hence the ODE has unique solution in around a particular point.

So (2) false

Given (x1(0), x2(0)) = (1,1)

Hence there is a unique solution around time 0

Therefore (4) true, (1) true (3) false

System of ODE Question 5:

Let A be an n × n matrix with distinct eigenvalues {λ1, ..., λn} with corresponding linearly independent eigenvectors {v1, ..., vn}.
Then, the non-homogeneous differential equation

x'(t) = Ax(t) + \(e^{\lambda_1t}\) v1

  1. does not have a solution of the form \(e^{\lambda_1t}\)a for any vector a ∈ \(\mathbb{R}\)n
  2. has a solution of the form \(e^{\lambda_1t}\)a  for some vector a ∈ \(\mathbb{R}\)n
  3. has a solution of the form \(e^{\lambda_1t}\)a + \(te^{\lambda_1t}\)b for some vectors a b ∈ \(\mathbb{R}\)n
  4. does not have a solution of the form \(e^{\lambda_1t}\)a + \(te^{\lambda_1t}\)b for any vectors a b ∈ \(\mathbb{R}\)n

Answer (Detailed Solution Below)

Option :

System of ODE Question 5 Detailed Solution

Explanation:

When differential equations is in the form of \(\frac{dy}{dx}+ Py = Q(x)\)  then,

\(I.F = e^{\int p dx}\)   

and the solution is \(y\times I.F = \int Q(I.F) dx +c\)

Option 1) Let n = 1 then,

x'(t) = Ax(t) + \(e^{λ_1t} v_1\)  

and Let A = I (Identity matrix) and λ1 = 1, v1 = 1 

then x' = x + \(e^t\) 

⇒ x' - x = \(e^t\) which is linear differential Equation then, 

I.F= \(e^{\int{-dt}}\) = \(e^{-t}\) 

solution is \(x e^ {-t} \)  = \(\int(e^t e^{-t})\)dt + c

x = \(te^{t}+ce^{t}\) 

∴ Option 1 is correct.

By a similar argument in option 1, option 2 is incorrect.

Similarly, By the above explanation, Option 3 is correct.

By the above explanation, Option 4 is incorrect.  

The correct options are 1 and 3. 

System of ODE Question 6:

Consider the second order ordinary differential equation, y" + 4y' + 5y = 0. If y(0) = 0 and y'(0) = 1, then the value of y(π/2) is (Round off to 3 decimal places).

Answer (Detailed Solution Below) 0.041 - 0.045

System of ODE Question 6 Detailed Solution

Explanation:

The second order ordinary differential equation:


\(y'' + 4y' + 5y = 0, \quad y(0) = 0, \quad y'(0) = 1\),


The characteristic equation for the given ODE is:

\(r^2 + 4r + 5 = 0.\)

Using the quadratic formula:

\(r = \frac{-4 \pm \sqrt{4^2 - 4(1)(5)}}{2(1)} = \frac{-4 \pm \sqrt{-4}}{2}\).

Simplify:

\(r = -2 \pm i.\)

Thus, the general solution of the differential equation is:

\(y(t) = e^{-2t} \left(C_1 \cos(t) + C_2 \sin(t)\right)\).

Initial Conditions
 At t = 0 , y(0) = 0 :
   
\( y(0) = e^{0} \left(C_1 \cos(0) + C_2 \sin(0)\right) = C_1 = 0\).
   

   Thus, the solution simplifies to:
   
 \( y(t) = e^{-2t} C_2 \sin(t).\)
   

 At t = 0 , y'(0) = 1 :
   First, compute y'(t) :
   
\( y'(t) = \frac{d}{dt}\left(e^{-2t} C_2 \sin(t)\right).\)
   
   Using the product rule:
   
\( y'(t) = e^{-2t} C_2 \cos(t) - 2e^{-2t} C_2 \sin(t).\)
   

   At t = 0 :
   
\( y'(0) = e^{0} C_2 \cos(0) - 2e^{0} C_2 \sin(0) = C_2 \cdot 1 - 2C_2 \cdot 0 = C_2\).
   

   Thus, C2 = 1 .


The solution is:

\(y(t) = e^{-2t} \sin(t)\).
Substitute \(t = \frac{\pi}{2}\) :

\(y\left(\frac{\pi}{2}\right) = e^{-2 \cdot \frac{\pi}{2}} \sin\left(\frac{\pi}{2}\right)\).

Simplify:
\( y\left(\frac{\pi}{2}\right) = e^{-\pi} \cdot 1 = e^{-\pi}\).

Using \(e^{-\pi} \approx 0.0432\) :

\(y\left(\frac{\pi}{2}\right) \approx 0.043.\)

Final Answer: 0.043.

System of ODE Question 7:

If x1 = x1(t) , x= x2(t) is the solution of the initial value problem 

\(\rm e^{-t}\frac{dx_1}{dt}=-x_1+x_2, \)

\(\rm e^{-t}\frac{dx_2}{dt}=-x_1-x_2, \)

x1(0) = 1, x2(0) = 0 and r(t) = \(\rm \sqrt{x_1^2(t)+x_2^2(t)} \), then which of the following statements are true? 

  1. r(t) → 0 as t → +∞
  2. r(ln 2) = e-1
  3. r(ln 2) = 2e​-1
  4. r(t)et → 0 as t → +∞

Answer (Detailed Solution Below)

Option :

System of ODE Question 7 Detailed Solution

The correct answers are (1), (2) & (4)

We will update the solution of the question later.

Get Free Access Now
Hot Links: teen patti winner teen patti 3a teen patti tiger